New clutch oil-pressure establishing method design of PHEVs during mode transition process for transient torsional vibration suppression of planetary power-split system

2020 ◽  
Vol 148 ◽  
pp. 103801 ◽  
Author(s):  
Feng Wang ◽  
Jiaqi Xia ◽  
Xing Xu ◽  
Yingfeng Cai ◽  
Zhiguang Zhou ◽  
...  
2019 ◽  
Author(s):  
Mengna Li ◽  
Zhiguo Zhao ◽  
Lanxing Jiang ◽  
Xuhui Tang

2018 ◽  
Vol 107 ◽  
pp. 221-240 ◽  
Author(s):  
Yanzhao Su ◽  
Minghui Hu ◽  
Ling Su ◽  
Datong Qin ◽  
Tong Zhang ◽  
...  

Author(s):  
Xiaohua Zeng ◽  
Zhenwei Wang ◽  
Dafeng Song ◽  
Dongpo Yang

The coordination control of a transmission system has gradually attracted more attention with the development of hybrid electric vehicles. However, nonlinear coupling of multiple power sources, superposition of different dynamic characteristics in multiple components, and withdrawal and intervention for a power-split powertrain with a two-speed automated manual transmission (AMT) gearbox can cause jerk and vibration of the transmission system during the shift, which has higher requirements and challenges for the overall performance improvement of the system. This paper designs a novel, robust, augmented H∞ shift control strategy for a power-split system with a two-speed AMT gearbox of a heavy commercial vehicle and verifies the strategy’s effectiveness with simulations and experiments. First, the dynamic plant model and kinetic equations are established, and the shift is divided into five stages to clearly reveal the jerk and vibration problem. Based on augmented theory, a robust H∞ shift control strategy is proposed. Shift coordination is transformed into a speed tracking problem, and state variable and disturbance are reconstructed to obtain a new augmented system. Simulation and hardware-in-the-loop test are carried out to verify the effectiveness of the strategy, which mainly includes simulation of pneumatic actuator and H∞ control strategy. Results show that the proposed H∞ control strategy can greatly reduce the jerk of the transmission system. The jerk produced by the proposed strategy is decreased from 20.4 to 4.07 m/s3, leading to a substantial improvement of 80%. Therefore, the proposed strategy may offer a theoretical reference for the actual vehicle controller during the shift.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2989 ◽  
Author(s):  
Yang ◽  
Zhang ◽  
Zhang ◽  
Tian ◽  
Hu

Torque coordinated control of the relevant power sources has an important impact on the vehicle dynamics and driving performance during the mode transition of the hybrid electric vehicles(HEVs). Considering the dynamic impact problem caused by mode transition, this paper, based upon the structural features of axially paralleled hybrid power system, introduces the bumpless mode switching control theory to analyze multi-mode transition. Firstly, the state transition process is abstracted as the state space transition problem of hybrid system. Secondly the mode transition is divided into four sub-states, and the state model of each sub-state is established. Thirdly, taking the cost functions as the optimization objective, the state switching process is solved, and the control vectors of each switching process are obtained. Simulation and experimental results show that the proposed control strategy can effectively suppress torque fluctuation, avoid longitudinal acceleration impact, and improve driving performance.


2017 ◽  
Vol 105 ◽  
pp. 2898-2903 ◽  
Author(s):  
Xun Zhang ◽  
Hui Liu ◽  
Chen yinqi

Author(s):  
Ling Li ◽  
Fazhan Tao ◽  
Zhumu Fu

Purpose The flexible mode transitions, multiple power sources and system uncertainty lead to challenges for mode transition control of four-wheel-drive hybrid powertrain. Therefore, the purpose of this paper is to improve dynamic performance and fuel economy in mode transition process for four-wheel-drive hybrid electric vehicles (HEVs), overcoming the influence of system uncertainty. Design/methodology/approach First, operation modes and transitions are analyzed and then dynamic models during mode transition process are established. Second, a robust mode transition controller based on radial basis function neural network (RBFNN) is proposed. RBFNN is designed as an uncertainty estimator to approximate lumped model uncertainty due to modeling error. Based on this estimator, a sliding mode controller (SMC) is proposed in clutch slipping phase to achieve clutch speed synchronization, despite disturbance of engine torque error, engine resistant torque and clutch torque. Finally, simulations are carried out on MATLAB/Cruise co-platform. Findings Compared with routine control and SMC, the proposed robust controller can achieve better performance in clutch slipping time, engine torque error, vehicle jerk and slipping work either in nominal system or perturbed system. Originality/value The mode transition control of four-wheel-drive HEVs is investigated, and a robust controller based on RBFNN estimation is proposed. Compared results show that the proposed controller can improve dynamic performance and fuel economy effectively in spite of the existence of uncertainty.


Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 54 ◽  
Author(s):  
Jingang Ding ◽  
Xiaohong Jiao

The mode transition of single-shaft parallel hybrid electric vehicles (HEVs) between engine and motor has an important impact on power and drivability. Especially, in the process of mode transition from the pure motor-drive operating mode to the only engine-drive operating mode, the motor starting engine and the clutch control problem have an important influence on driving quality, and solutions have a bit of room for improving dynamic performance. In this paper, a novel mode transition control method is proposed to guarantee a fast and smooth mode transition process in this regard. First, an adaptive sliding mode control (A-SMC) strategy is presented to obtain the desired torque trajectory of the clutch transmission. Second, a proportional-integral (PI) observer is designed to estimate the actual transmission torque of the clutch. Meanwhile, a fractional order proportional-integral-differential (FOPID) controller with the optimized control parameters by particle swarm optimization (PSO) is employed to realize the accurate position tracking of the direct current (DC) motor clutch so as to ensure clutch transmission torque tracking. Finally, the effectiveness and adaptability to system parameter perturbation of the proposed control approach are verified by comparison with the traditional control strategy in a MATLAB environment. The simulation results show that the driving quality of the closed-loop system using the proposed control approach is obviously improved due to fast and smooth mode transition process and better adaptability.


Sign in / Sign up

Export Citation Format

Share Document