Dynamic coupling vibration of rotating shaft–disc–blade system — Modeling, mechanism analysis and numerical study

2022 ◽  
Vol 167 ◽  
pp. 104542
Author(s):  
Laihao Yang ◽  
Zhu Mao ◽  
Xuefeng Chen ◽  
Ruqiang Yan ◽  
Jinsong Xie ◽  
...  
2021 ◽  
Vol 1741 ◽  
pp. 012008
Author(s):  
A A Kulikov ◽  
A V Ratushnyi ◽  
I A Kovaliov ◽  
A S Mandryka ◽  
A S Ignatiev

Author(s):  
Yinquan Yu ◽  
Chao Bi ◽  
Quan Jiang ◽  
Song Lin ◽  
Phyu Nu Hla ◽  
...  

In order to achieve high area density of HDD to 10Tbit/in2, both radial and axial direction Repeatable Run-Out (RRO) and None repeatable Run-Out (NRRO) of spindle motor in HDD should be significantly reduced. That means the high performance spindle motor is need. Currently, the spindle motor used in HDD uses a rotating shaft FDB which structure likes slender cantilever beam to support the rotor and the problem of this kind of structure is reported in [1]. This structure cannot meet HDD high TPI requirements and should be replaced by the fixed shaft FDB spindle motor and the analytical model is shown in Fig. 1. Moreover, different types of Unbalance Magnetic Pull (UMP) of the Spindle motor and induced vibration should be fully studied. In order to fully understand motor vibration behavior, a thorough theoretical derivation of motor dynamics should be carried out as they can disclose clearly the global performance of the motor. Generally, four types of UMP reported in [1]–[3] can generate the motor lateral and axis vibration and produce motor acoustic noise. Researchers have studied vibration and acoustic signals in recent years[1]–[6]. In this paper, the PMSM mathematic model has introduced and validated by 12 slots and 5 pole-pairs PM surface mounting Synchronous motor M1 simulation case study. This type of Permanent Magnetic Synchronous motor (PMSM) is using in many applications, e.g.


Author(s):  
Mihai Arghir ◽  
Samia Dahite

Abstract A radial segmented seal is composed of three or six carbon segments that are assembled by a circumferential (garter) spring that presses them against the rotor. Assembled, they take the form of an annular ring. Each segment has several pads that generate a radial lift force depending on the rotor speed. There are many ways of creating effective lift forces. For example, a pocket on the pad creates a lift force because each pad will act as a Rayleigh step bearing. A groove on the rotating shaft will also create a radial lift force on the pad. However, this latter lift force will be unsteady. The aim of the present work is the numerical study of the lift created by a grooved rotor on a pad. Due to the very small operating radial clearances of radial segmented seals (less than 10 μm), the problem can be simplified by analyzing a single pad and a grooved runner. Previous analysis of gas face seals or thrust bearings always considered grooved pads and a smooth runner, even when the runner was grooved. The peculiarity of this study, which is the first of its kind, is considering the unsteady problem of the moving runner grooves. The analysis was performed for a single pad of a radial segmented seal operating with air.


Author(s):  
Norihisa Anegawa ◽  
Hiroyuki Fujiwara ◽  
Osami Matsushita

As is well known, zero and one nodal diameter (k=0 and k=1) modes of a blade system interact with the shaft system. The former couples with torsional and/or axial shaft vibrations, and the latter with bending shaft vibrations. This paper addresses the latter. With respect to k=1 modes, we discuss, from experimental and theoretical viewpoints, in-plane blades and out-of-plane blades attached radially to a rotating shaft. We found that when we excited the shaft at the rotational speed of Ω=|ωb−ωs| (where ωb is the blade natural frequency, ωs the shaft natural frequency, and Ω is the rotational speed), the exciting frequency ν=ωs induced shaft-blade coupling resonance. In addition, in the case of the in-plane blade system, we encountered an additional resonance attributed to deformation caused by gravity. In the case of the out-of-plane blade system, we experienced two types of abnormal vibrations. One is the additional resonance generated at Ω=ωb/2 due to the unbalanced shaft and the anisotropy of bearing stiffness. The other is a flow-induced, self-excited vibration caused by galloping due to the cross-sectional shape of the blade tip because this instability disappeared in the rotation test inside a vacuum chamber. The two types of abnormal vibrations occurred at the same time, and both led to the entrainment phenomenon, as identified by our own frequency analysis technique.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1073
Author(s):  
Shangwen He ◽  
Kunli Si ◽  
Bingbing He ◽  
Zhaorui Yang ◽  
Ying Wang

Shroud devices which are typical cyclic symmetric structures are widely used to reduce the vibration of turbine blades in aero engines. Asymmetric rub-impact of adjacent shrouds or aerodynamic excitation forces can excite the bending-torsion coupling vibration of shrouded blades, which will lead to complex contact motions. The aim of this paper is to study the rub-impact dynamic characteristics of bending-torsion coupling vibration of shrouded blades using a numerical method. The contact-separation transition mechanism under complex motions is studied, the corresponding boundary conditions are set up, and the influence of moments of contact forces and aerodynamic excitation forces on the motion of the blade is considered. A three-degree-of-freedom mass-spring model including two mass blocks with the same size and shape is established to simulate the bending-torsion coupling vibration, and the dynamic equations of shrouded blades under different contact conditions are derived. An algorithm based on the fourth-order Runge–Kutta method is presented for simulations. Variation laws of the forced response characteristics of shrouded blades under different parameters are studied, on the basis of which the method to evaluate the vibration reduction characteristics of the shrouded blade system when the motion of the blade is chaotic is discussed. Then, the vibration reduction law of shrouded blades under bending-torsion coupling vibration is obtained.


1986 ◽  
Vol 108 (2) ◽  
pp. 171-176 ◽  
Author(s):  
J. W. David ◽  
L. D. Mitchell

The ability to analyze accurately the torsional-axial-lateral coupled response of geared systems is the key to the prediction of dynamic gear forces, shaft moments and torques, dynamic reaction forces, and moments at all bearing points. These predictions can, in turn, be used to estimate gear-tooth lives, shaft lives, housing vibrational response, and noise generation. Typical applications would be the design and analysis of gear drives in heavy-lift helicopters, industrial speed reducers, Naval propulsion systems, and heavy, off-road equipment. In this paper, the importance of certain linear dynamic coupling terms on the predicted response of geared rotor systems is addressed. The coupling terms investigated are associated with those components of a geared system that can be modeled as rigid disks. First, the coupled, nonlinear equations of motion for a disk attached to a rotating shaft are presented. The conventional argument for ignoring these dynamic coupling terms is presented and the error in this argument is revealed. It is shown that in a geared system containing gears with more than about 50 teeth, the magnitude of some of the dynamic-coupling terms is potentially as large as the magnitude of the linear terms that are included in most rotor analyses. In addition, it is shown that the dynamic coupling terms produce the multi-frequency responses seen in geared systems. To quantitatively determine the effects of the linear dynamic-coupling terms on the predicted response of geared rotor systems, a trial problem is formulated in which these effects are included. The results of this trial problem shows that the inclusion of the linear dynamic-coupling terms changed the predicted response up to eight orders of magnitude, depending on the response frequency. In addition, these terms are shown to produce sideband responses greater than the unbalanced response of the system.


2012 ◽  
Author(s):  
Piyush Sabharwall ◽  
Nolan Anderson ◽  
Haihua Zhao ◽  
Shannon Bragg-Sitton ◽  
George Mesina

1996 ◽  
Vol 118 (1) ◽  
pp. 100-106 ◽  
Author(s):  
S. C. Huang ◽  
K. B. Ho

A new approach to analyzing the dynamic coupling between shaft torsion and blade bending of a rotating shaft–disk–blade unit is introduced. The approach allows the shaft to vibrate freely around its rotation axis instead of assuming a periodic perturbation of the shaft speed that may accommodate the shaft flexibility only to a limited extent. A weighted residual method is applied, and the receptances at the connections of blades and shaft–disk are formulated. Numerical examples are given for cases with between two and six symmetrically arranged blades. The results show not only coupling between the shaft, disk, and blades, but also coupling between individual blades where the shaft acts as a rigid support and experiences no torsional vibration. The blade-coupling modes occurred only in repeated frequencies. Finally, the effect of shaft speed on the modal frequencies was investigated. Plots illustrating the occurrence of critical speeds and flutter instabilities are presented.


Author(s):  
Lai-Hao Yang ◽  
Zhu Mao ◽  
Shu-Ming Wu ◽  
Xue-Feng Chen ◽  
Ru-Qiang Yan

Sign in / Sign up

Export Citation Format

Share Document