Vibration Diagnosis Featuring Blade-Shaft Coupling Effect of Turbine Rotor Models

Author(s):  
Norihisa Anegawa ◽  
Hiroyuki Fujiwara ◽  
Osami Matsushita

As is well known, zero and one nodal diameter (k=0 and k=1) modes of a blade system interact with the shaft system. The former couples with torsional and/or axial shaft vibrations, and the latter with bending shaft vibrations. This paper addresses the latter. With respect to k=1 modes, we discuss, from experimental and theoretical viewpoints, in-plane blades and out-of-plane blades attached radially to a rotating shaft. We found that when we excited the shaft at the rotational speed of Ω=|ωb−ωs| (where ωb is the blade natural frequency, ωs the shaft natural frequency, and Ω is the rotational speed), the exciting frequency ν=ωs induced shaft-blade coupling resonance. In addition, in the case of the in-plane blade system, we encountered an additional resonance attributed to deformation caused by gravity. In the case of the out-of-plane blade system, we experienced two types of abnormal vibrations. One is the additional resonance generated at Ω=ωb/2 due to the unbalanced shaft and the anisotropy of bearing stiffness. The other is a flow-induced, self-excited vibration caused by galloping due to the cross-sectional shape of the blade tip because this instability disappeared in the rotation test inside a vacuum chamber. The two types of abnormal vibrations occurred at the same time, and both led to the entrainment phenomenon, as identified by our own frequency analysis technique.

Author(s):  
Norihisa Anegawa ◽  
Hiroyuki Fujiwara ◽  
Osami Matsushita

It is well known that zero and one nodal diameter (k = 0 and k = 1) modes of a blade system interact with the shaft system. The former is coupling with torsional and/or axial shaft vibrations, and the latter with bending shaft vibrations. This paper deals with the latter. With respect to k = 1 modes, we discuss experimentally and theoretically in-plane blades and out-of-plane blades attached radially to a rotating shaft. We found that when we excited the shaft at the rotational speed of Ω = |ωb – ωs| (where ωb = blade natural frequency, ωs = shaft natural frequency and Ω = rotational speed), the exciting frequency ν = ωs induced shaft-blade coupling resonance. In addition, in the case of the in-plane blade system, we encountered an additional resonance attributed to deformation caused by gravity. In the case of the out-of-plane blade system, we experienced two types of abnormal vibrations. One is the additional resonance generated at Ω = ωb / 2 due to the unbalanced shaft and the anisotropy of bearing stiffness. The other is a flow-induced self-exited vibration caused by galloping due to the cross-section shape of the blade tip, because this instability disappeared at the rotation test inside a vacuum chamber. Both occurred at the same time, and both led to the entrainment phenomenon, which was identified by our own frequency analysis technique.


Author(s):  
Hiroyuki Fujiwara ◽  
Tadashi Tsuji ◽  
Osami Matsushita

In certain rotor systems, bending-torsion coupled resonance occurs when the rotational speed Ω (= 2π Ωrps) is equal to the sum/difference of the bending natural frequency ωb (= 2π fb) and torsional natural frequency ωθ(= 2πfθ). This coupling effect is due to an unbalance in the rotor. In order to clarify this phenomenon, an equation was derived for the motion of the bending-torsion coupled 2 DOF system, and this coupled resonance was verified by numerical simulations. In stability analyses of an undamped model, unstable rotational speed ranges were found to exist at about Ωrps = fb + fθ. The conditions for stability were also derived from an analysis of a damped model. In rotational simulations, bending-torsion coupled resonance vibration was found to occur at Ωrps = fb − fθ and fb + fθ. In addition, confirmation of this resonance phenomenon was shown by an experiment. When the rotor was excited in the horizontal direction at bending natural frequency, large torsional vibration appeared. On the other hand, when the rotor was excited by torsion at torsional natural frequency, large bending vibration appeared. Therefore, bending-torsion coupled resonance was confirmed.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Xindong Ma ◽  
Shuqian Cao

The coupling effect of two different frequency scales between the exciting frequency and the natural frequency of the Shimizu-Morioka system with slow-varying periodic excitation is investigated. First, based on the analysis of the equilibrium states, homoclinic bifurcation, fold bifurcation, and supercritical Hopf bifurcation are observed in the system under a certain parameter condition. When the exciting frequency is much smaller than the natural frequency, we can regard the periodic excitation as a slow-varying parameter. Second, complicated dynamic behaviors are analyzed when the slow-varying parameter passes through different bifurcation points, of which the mechanisms of four different bursting patterns, namely, symmetric “homoclinic/homoclinic” bursting oscillation, symmetric “fold/Hopf” bursting oscillation, symmetric “fold/fold” bursting oscillation, and symmetric “Hopf/Hopf” bursting oscillation via “fold/fold” hysteresis loop, are revealed with different values of the parameterbby means of the transformed phase portrait. Finally, we can find that the time interval between two symmetric adjacent spikes of bursting oscillations exhibits dependency on the periodic excitation frequency.


2021 ◽  
Vol 30 ◽  
pp. 263498332110061
Author(s):  
Gunyong Hwang ◽  
Dong Hyun Kim ◽  
Myungsoo Kim

This research aims to optimize the mechanical properties of woven fabric composites, especially the elastic modulus. A micromechanics model of woven fabric composites was used to obtain the mechanical properties of the fiber composite, and a genetic algorithm (GA) was employed for the optimization tool. The structure of the fabric fiber was expressed using the width, thickness, and wave pattern of the fiber strands in the woven fabric composites. In the GA, the chromosome string consisted of the thickness and width of the fill and warp strands, and the objective function was determined to maximize the elastic modulus of the composite. Numerical analysis showed that the longitudinal mechanical properties of the strands contributed significantly to the overall elastic modulus of the composites because the longitudinal property was notably larger than the transverse property. Therefore, to improve the in-plane elastic modulus, the resulting geometry of the composites possessed large volumes of related strands with large cross-sectional areas and small strand waviness. However, the numerical results of the out-of-plane elastic modulus generated large strand waviness, which contributed to the fiber alignment in the out-of-plane direction. The findings of this research are expected to be an excellent resource for the structural design of woven fabric composites.


2002 ◽  
Vol 205 (15) ◽  
pp. 2183-2188 ◽  
Author(s):  
M. A. Connaughton ◽  
M. L. Fine ◽  
M. H. Taylor

SUMMARYThe influence of temperature, size and season on the sounds produced by the sonic muscles of the weakfish Cynoscion regalis are categorized and used to formulate a hypothesis about the mechanism of sound generation by the sonic muscle and swimbladder. Sounds produced by male weakfish occur at the time and location of spawning and have been observed in courtship in captivity. Each call includes a series of 6-10 sound pulses, and each pulse expresses a damped, 2-3 cycle acoustic waveform generated by single simultaneous twitches of the bilateral sonic muscles. The sonic muscles triple in mass during the spawning season, and this hypertrophy is initiated by rising testosterone levels that trigger increases in myofibrillar and sarcoplasmic cross-sectional area of sonic muscle fibers. In response to increasing temperature, sound pressure level (SPL), dominant frequency and repetition rate increase, and pulse duration decreases. Likewise, SPL and pulse duration increase and dominant frequency decreases with fish size. Changes in acoustic parameters with fish size suggest the possibility that drumming sounds act as an `honest' signal of male fitness during courtship. These parameters also correlate with seasonally increasing sonic muscle mass. We hypothesize that sonic muscle twitch duration rather than the resonant frequency of the swimbladder determines dominant frequency. The brief (3.5 ms), rapidly decaying acoustic pulses reflect a low-Q, broadly tuned resonator, suggesting that dominant frequency is determined by the forced response of the swimbladder to sonic muscle contractions. The changing dominant frequency with temperature in fish of the same size further suggests that frequency is not determined by the natural frequency of the bladder because temperature is unlikely to affect resonance. Finally, dominant frequency correlates with pulse duration (reflecting muscle twitch duration),and the inverse of the period of the second cycle of acoustic energy approximates the recorded frequency. This paper demonstrates for the first time that the dominant frequency of a fish sound produced by a single muscle twitch is apparently determined by the velocity of the muscle twitch rather than the natural frequency of the swimbladder.


1975 ◽  
Vol 97 (1) ◽  
pp. 23-32 ◽  
Author(s):  
L. S. S. Lee

Vibrations of an intermediately supported U-bend tube fall into two independent classes as an incomplete ring of single span does, namely, the in-plane vibration and the coupled twist-bending out-of-plane vibration. Natural frequencies may be expressed in terms of a coefficient p which depends on the stiffness ratio k, the ratio of lengths of spans, and the supporting conditions. The effect of the torsional flexibility of a curved bar acts to release the bending stiffness of a straight beam and hence decrease the natural frequency. Some conclusions for an incomplete ring of single span may not be equally well applicable to the U-tube case due to the effects of intermediate supports and the presence of the supporting straight segments. Results of the analytical predictions and the experimental tests of an intermediately supported U-tube are in good agreement.


2020 ◽  
Author(s):  
Min-Gu Kang ◽  
Jong-Guk Choi ◽  
Jimin Jeong ◽  
Jae Yeol Park ◽  
Hyeon-Jong Park ◽  
...  

Abstract Spin-orbit coupling effect in structures with broken inversion symmetry, known as the Rashba effect, facilitates spin-orbit torques (SOTs) in heavy metal/ferromagnet/oxide structures, along with the spin Hall effect. Electric-field control of the Rashba effect is established for semiconductor interfaces, but it is challenging in structures involving metals owing to the screening effect. Here, we report that the Rashba effect in Pt/Co/AlOx structures is laterally modulated by electric voltages, generating out-of-plane SOTs. This enables field-free switching of the perpendicular magnetization and electrical control of the switching polarity. Changing the gate oxide reverses the sign of out-of-plane SOT while maintaining the same sign of voltage-controlled magnetic anisotropy, which confirms the Rashba effect at the Co/oxide interface is a key ingredient of the electric-field modulation. The electrical control of SOT switching polarity in a reversible and non-volatile manner can be utilized for programmable logic operations in spintronic logic-in-memory devices.


2019 ◽  
Vol 79 ◽  
pp. 01006
Author(s):  
Chang-ji Shan ◽  
Yi-duo Bian ◽  
Ting-ting Dai ◽  
Cai Yan ◽  
Guo-fang Du ◽  
...  

The follow-up hydraulic muffler can make the natural frequency of the muffler equal to systematic pulsation frequency in time by changing the section area of the quality chamber so as to achieve the best attenuation effect. In this paper, a spring-damp regulator is installed on the basis of the hydraulic muffler, and the static and dynamic characteristics of the follow-up hydraulic muffler are analyzed by measuring the rotational speed of the pump with the sensor. The results show that the hydraulic muffler based on the spring-damp regulator can effectively attenuate the pulsation.


Author(s):  
Dong Zhao ◽  
Rujian Ma ◽  
Dongmei Cai

A wideband multiple extended tuned mass dampers (METMD) system has been developed for reducing the multiple resonant responses of the platforms to all kinds of loads, such as earthquake, typhoon, tsunami and big ice load. This system is composed of several subsystems, each of which consists of one set of extended tuned mass damper (ETMD) unit covering a specific frequency bandwidth, and its average frequency is tuned to one of the first resonant frequencies of the platform. The offshore platform is simplified to a single degree-of-freedom (DOF) system to which a METMD subsystem (composed of m ETMDs) is attached and constitutes m+1 DOFs system. The total mass ratio of the METMD subsystem to the platform is 14% and the frequency ratio of the exciting frequency to the platform’s natural frequency varies in [0.5, 1.5]. The theory analysis shows that: 1) the platform has the better vibration control effect when the non-dimensional frequency bandwidth Ω, which is defined as the ratio of the frequency range to the controlled (target) platforms natural frequency, is in [0.35, 0.6]; 2) the damping coefficient ξ of ETMD systems is in [0.05, 0.15] and 3) the number of the ETMDs is 5 when Ω = 0.45 and ξ = 0.1. The FEM simulation shows that the METMD has a better vibration control effect on the mega-platforms’ vibration control under the random ocean wave load.


Author(s):  
Kenneth Bhalla ◽  
Lixin Gong

The purpose of this paper is to present a method that has been developed to identify if vortex induced vibration (VIV) occurs in well jumper systems. Moreover, a method has been developed to determine when VIV mitigation measures such as strakes are required. The method involves determining the in-plane and out-of-plane natural frequencies and mode shapes. The natural frequencies are then used, in conjunction with the maximum bottom current expected at a given location to determine if suppression is required. The natural frequency of a jumper system is a function of many variables, e.g. span length, leg height, pipe diameter and thickness, buoyancy placement, buoyancy uplift, buoyancy OD, insulation thickness, and contents of the jumper. The suppression requirement is based upon calculating a lower bound lock-in current speed based upon an assumed velocity bandwidth centered about the lock-in current. The out-of-plane VIV cross-flow response is produced by a current in the plane of the jumper; whereas the in-plane VIV cross-flow response is produced by the out-of-plane current. Typically, the out-of-plane natural frequency is smaller than the in-plane natural frequency. Jumpers with small spans have higher natural frequencies; thus small span jumpers may require no suppression or suppression on the vertical legs. Whereas, larger span jumpers may require no suppression, suppression on the vertical legs or suppression on all the legs. The span of jumper systems (i.e. production, water injection, gas lift/injection ...) may vary in one given field; it has become apparent that not all jumper systems require suppression. This technique has allowed us to recognize when certain legs of a given jumper system may require suppression, thus leading to a jumper design whose safety is not compromised while in the production mode, as well as minimizing downtime and identifying potential savings from probable fatigue failures.


Sign in / Sign up

Export Citation Format

Share Document