Genetic contribution to variation in larval development time, adult size, and longevity of starved adults of Anopheles gambiae

2006 ◽  
Vol 6 (5) ◽  
pp. 410-416 ◽  
Author(s):  
Tovi Lehmann ◽  
Ryan Dalton ◽  
Eun Hea Kim ◽  
Erica Dahl ◽  
Abdoulaye Diabate ◽  
...  
2017 ◽  
Vol 77 (1) ◽  
pp. 38-42 ◽  
Author(s):  
T. N. Lima ◽  
D. C. R. Silva

Abstract Antlion larvae Myrmeleon brasiliensis Návas, 1914 (Neuroptera, Myrmeleontidae) are sit-and-wait predators who build traps to catch their prey. The aim of this study was to observe under laboratory conditions, how the energy cost spent on maintenance of their traps affects: the larval developmental time, time spent as a pupa, mortality rate of larvae and adult size. M. brasiliensis larvae were collected in the municipality of Aquidauana, Mato Grosso do Sul, Brazil and were individually maintained in plastic containers and subjected to two treatments. In the control treatment larvae did not have their traps disturbed while in the manipulated treatment, larvae had their traps disturbed three times a week. The experiments were followed until adult emergence. When the adults emerged, their body size (head-abdomen), anterior and posterior wing span and width were measured. Furthermore, the number of larvae that died during the experiment was recorded. The results showed that the larvae whose traps were manipulated had longer larval development time, smaller pupal development time and were smaller adults. It can be concluded that the energy expenditure spent on maintenance of the trap constructed by M. brasiliensis larvae can affect the development of negative ways, represented by a longer larval development and reduced adult size.


Author(s):  
Débora Aline Souza Nascimento ◽  
Frances Tatiane Tavares Trindade ◽  
Alexandre de Almeida e Silva

Abstract Several experiments with Anopheles darlingi Root, an important malaria vector in the Amazon region, were carried out in the laboratory, depending on the large-scale production of viable larvae and adults. Certainly, improvements in rearing conditions, including dietary requirements, can strongly affect mosquito production. In order to increase the production of this species in the laboratory, we first supplemented the regular larval diet (TetraMin Tropical Flakes) with different concentrations of vitamins and minerals and recorded several biological variables: survival and larval development time, emergence ratio, and adult longevity under a small-scale rearing condition. Second, we established an experimental design under regular lab-rearing conditions based on the concentration of vitamins and minerals that best contributed to the development of these anophelines, and evaluated the biological parameters already mentioned. Moreover, under regular rearing conditions, we recorded sex ratio, adult size, and longevity of adults fed with supplemented sucrose. The lowest concentration of vitamins (V5) and the average concentration of minerals (M3) increased larval survival and decreased larval development time compared with the control. Under regular rearing conditions, minerals provided higher larval survival and increased the longevity of adults fed with supplemented sucrose. Supplementing the regular larval diet and sucrose solutions with vitamins and minerals increased the production of immatures and the longevity of An. darlingi adults.


1993 ◽  
Vol 71 (3) ◽  
pp. 568-578 ◽  
Author(s):  
D. Dudley Williams ◽  
Annette Tavares-Cromar ◽  
Donn J. Kushner ◽  
John R. Coleman

The relationship between the biology and habitat of larval mosquitoes was studied in a series of artificial ponds of differing characteristics established across a terrestrial vegetation gradient from open fields to deep woods. The ponds were uniformly colonized by two widespread species of Culex, both characteristic of small bodies of water, including artificial, "container" habitats. First-instar larvae of Culex restuans were found within 2 days of filling the ponds with water and four or five generations were produced from May until the end of September. One very long generation occurred in July, which corresponded to maximum larval densities. Overall, there was a strong relationship between larval development time of C. restuans and larval density. A few larvae of Culex pipiens pipiens occurred sporadically throughout the summer, but numbers did not increase until C. restuans populations began to wane in late July. Thereafter two, or possibly three, generations were produced into the autumn. The patterns of colonization, synchrony of life history, and growth of these two species were remarkably consistent amongst the ponds, despite considerable variation in both their physical and biological environments (e.g., over the 2 years of study, conductivity ranged from 20 to 890 μS, pH from 6.4 to 10.7, dissolved oxygen from 0 to 13.5 ppm, and water temperature from 5 to 29.8 °C). Density of C. restuans was related to water temperature and pH at the "open" site and to water temperature, dissolved oxygen, percent algae, and percent detritus at the "edge of the woods" site. At the "deep woods" site, larval numbers were related to temperature, pH, conductivity, and dissolved oxygen. At both the edge and deep wood sites, larval development time of C. restuans increased with mean water temperature to 20 °C. Above this temperature, larval development time tended to decrease.


2001 ◽  
Vol 133 (3) ◽  
pp. 375-387 ◽  
Author(s):  
B.J. Bentz ◽  
J.A. Logan ◽  
J.C. Vandygriff

AbstractDendroctonus ponderosae (Hopkins) is widely distributed across western North America, feeding in at least 12 native species of Pinus L. (Pinaceae). We investigated the existence of heritable differences in two life-history parameters (adult size and development time) of D. ponderosae from a northern population (central Idaho, Pinus contorta Douglas ex Loudon) and a southern population (southern Utah, Pinus ponderosa Douglas ex P. and C. Lawson). We attempted to separate heritable from environmental effects by rearing individuals from both populations through two generations (F1 and F2) in a common standardized laboratory environment with a constant temperature. Two treatment effects were tested for in the F2 generation: (1) geographic location (source host) for F0D. ponderosae; and (2) the F2 brood host. We hypothesized that, if differences were observed and the F0 source host and region had a greater effect on F2 brood development time and adult size than did the host in which F2 brood were reared, a heritable factor related to the F0 parents was responsible. Time to emergence was significantly shorter for second-generation offspring of the northern population than for second-generation offspring of the southern population, regardless of the F2 brood host. Although both the F2 brood host and F0 source parents were significant in explaining differences observed in the developmental-time distribution of F2 brood, the F0 source effect was found to be much greater. Also, F2 males and females from southern source parents were significantly larger than F2 brood from northern source parents when reared in both F2 brood hosts. Geographic region and original host of F0 source parents had a significant effect on F2 offspring size, whereas the immediate food for F2 brood was not significant in explaining differences. These results suggest genetically based regional differences in D. ponderosae populations.


1960 ◽  
Vol 1 (3) ◽  
pp. 333-350 ◽  
Author(s):  
Forbes W. Robertson

1. The growth of strains of Drosophila melanogaster selected for large size under different nutritional conditions has been recorded on a variety of different media and compared with that of the unselected population. The experiments were designed to test the inference from earlier work that selection for the same ‘character’, body size, on different diets leads to more or less different changes in growth and metabolism. The inference has been amply confirmed.2. When compared on a number of deficient synthetic diets, the strains which had been selected either on a low-protein diet or on one in which all the essential nutrients had been reduced, suffered a much smaller reduction in body size than either the unselected population or, especially, a large strain selected on the favourable live yeast medium. Some diets which drastically reduced the body size of the unselected population lead to no change in the size of strains selected on the synthetic media, although development time was prolonged. Hence selection had extended the capacity for maintaining a characteristic adult body size to diets which normally would lead to a decline. This is taken as evidence of improved adaptation to such conditions. There is also some evidence that selection on the synthetic diets had lowered the level of adaptation to the usual live yeast diet, since body size tended to be lower on this medium than on some of the normally sub-optimal diets.3. To provide comparisons in adverse conditions which are probably more closely related to those commonly encountered by populations in nature or the laboratory, the performance of the strains has been compared in a graded series of competitive conditions on the live yeast medium. By using genetically marked files of the foundation population, which were shown to react in the same way as unmarked flies—in terms of survival, body size and development time—the competitive ability of the different strains has been tested against that of unselected individuals. The latter are generally superior to the selected strains, which differ among themselves, however, in a way which can be related to the conditions in which they were selected.4. Under such competitive conditions, the strains selected on the synthetic diets suffer a much greater decline in body size than do the unselected individuals. For the strain selected on live yeast, the proportional reduction of body size is about the same for the unselected flies at lower levels of crowding, but is clearly greater under more severe conditions of competition.5. The low-protein strain has been backcrossed to the unselected stock. When reared on a variety of synthetic diets, the performance of the F1 was generally intermediate between that of the parents.6. Nutritional variation may be responsible for either a high environmental correlation between the two measures of growth, body size and duration of larval period, or no apparent correlation. Provided the diet is not too unfavourable, body size remains constant although development time may be lengthened to a variable degree. With more adverse conditions, body size is reduced and development time is lengthened more or less proportionately. Such differences in reaction probably depend on the particular stage of larval growth and development primarily affected by the treatment; this problem is being examined further. The inverse relations between body size and development time may represent the operation of a kind of safety mechanism which ensures that the adult reproductive state is attained sooner than would be so if the capacity for maintaining a characteristic body size were more effective in relation to deficient diets. Populations and species adapted to different conditions are likely to differ as to where the balance is struck between effective maintenance of a characteristic adult size, with maximum potential egg production, and the alternative response, according to their ecology. This possibility must be borne in mind when the response to selection for, say, body size is compared in different species.


Acta Tropica ◽  
2014 ◽  
Vol 132 ◽  
pp. S96-S101 ◽  
Author(s):  
Gildas A. Yahouédo ◽  
Luc Djogbénou ◽  
Jacques Saïzonou ◽  
Bénoît S. Assogba ◽  
Michel Makoutodé ◽  
...  

2021 ◽  
Author(s):  
Marie C. Russell ◽  
Lauren J. Cator

AbstractBackgroundCyclopoid copepods have been applied successfully to limit populations of highly invasive Aedes albopictus mosquitoes that can vector diseases, including chikungunya, dengue, yellow fever, and Zika, to humans. However, there is concern that changes in certain vector traits, induced by exposure to copepod predation, might increase the risk of disease transmission. In this study, we tested whether cyclopoid copepod predation has sublethal effects on the development time or adult size of Ae. albopictus under the scenario of an invasion in southeast England, which lies at the northern edge of the vector’s expanding global range.MethodsThird instar Ae. albopictus larvae, hereafter referred to as “focal individuals”, were placed in individual Petri dishes, each containing four newly-hatched Ae. albopictus larvae, which were counted, removed, and replaced daily. All focal individuals were provided with fish food ad libitum, and half were exposed to Megacyclops viridis copepod predators. The day of pupation was recorded for each focal individual, and the wing length of each focal adult was also measured.ResultsExposing late instar Ae. albopictus to predation decreased their chances of surviving to adulthood. Mortality of the focal individuals was 12.9% in the predator treatment, and 2.9% in the controls. Three focal larvae that died in the predator treatment showed signs of melanization, indicative of wounding. Among surviving Ae. albopictus, no significant difference in either pupation day or wing length was observed due to copepod predation.ConclusionsWe found that M. viridis predation on smaller Ae. albopictus larvae does not significantly affect the pupation day or adult size of surrounding larger larvae that are less vulnerable to copepod attacks. This study controlled for density effects on size by maintaining a constant number of newly-hatched prey larvae surrounding each focal larva. Those working to control Ae. albopictus populations in the field should be made aware that increased adult body size can occur if copepod biocontrol agents are applied at lower than necessary levels. The absence of a significant sublethal impact from M. viridis copepod predation on surviving later-stage larvae in this analysis supports the use of M. viridis as a biocontrol agent.Graphical abstract


2020 ◽  
Author(s):  
Paul J. Huxley ◽  
Kris A. Murray ◽  
Samraat Pawar ◽  
Lauren J. Cator

ABSTRACTLaboratory-derived temperature dependencies of life history traits are increasingly being used to make mechanistic predictions for how climatic warming will affect vector-borne disease dynamics, partially by affecting abundance dynamics of the vector population. These temperature-trait relationships are typically estimated from populations reared on optimal resource supply, even though natural populations of vectors are expected to experience variation in resource supply, including intermittent resource limitation. Using laboratory experiments on the mosquito Aedes aegypti, a principal arbovirus vector, combined with stage-structured population modelling, we show that low-resource supply significantly depresses the vector’s maximal population growth rate across the entire temperature range (22-32°C) and causes it to peak at a lower temperature than at high-resource supply. This effect is primarily driven by an increase in juvenile mortality and development time, combined with an exaggerated decrease in adult size with temperature at low-resource supply. Our study suggests that projections of vector abundance and disease transmission based on laboratory studies are likely to substantially underestimate how resource supply can modulate the temperature-dependency of population-level fitness through its influence on juvenile survival and development time. Our results provide compelling evidence for future studies to consider resource supply when predicting the effects of climate and habitat change on disease vectors and transmission.


2020 ◽  
Vol 5 ◽  
pp. 171
Author(s):  
Diane Leslie Nkahe ◽  
Edmond Kopya ◽  
Borel Djiappi-Tchamen ◽  
Wilson Toussile ◽  
Nadege Sonhafouo-Chiana ◽  
...  

Background: Pyrethroid resistance is rapidly expanding in An. gambiae s.l. populations across Sub-Saharan Africa. Yet there is still not enough information on the fitness cost of insecticide resistance . In the present study, the fitness cost of insecticide resistance on Anopheles coluzzii population from the city of Yaoundé was investigated.  Methods: A resistant An. coluzzii colony was established from field collected mosquitoes resistant to both DDT and pyrethroid and selected for 12 generations with deltamethrin 0.05%. The Ngousso laboratory susceptible strain was used as control. A total of 100 females of each strain were blood fed and allowed for individual eggs laying, and then different life traits parameters such as fecundity, fertility, larval development time, emergence rate and longevity were measured. The TaqMan assay was used to screen for the presence of the L1014F and L1014S kdr mutations. Results:  Field collected mosquitoes from the F0 generation had a mortality rate of 2.05% for DDT, 34.16% for permethrin and 50.23% for deltamethrin. The mortality rate of the F12 generation was 30.48% for deltamethrin, 1.25% for permethrin  and 0% for DDT. The number of eggs laid per female was lower in the resistant colony compared to the susceptible (p <0.0001). Insecticide resistant larvae were found with a significantly long larval development time (10.61±0.33 days) compare to susceptible (7.57±0.35 days). The number of emerging females was significantly high in the susceptible group compared to the resistant . The adults lifespan was also significantly high for susceptible (21.73±1.19 days) compared to resistant (14.63±0.68 days). Only the L1014F-kdr allele was detected in resistant population.. Conclusion: The study suggests that pyrethroid resistance is likely associated with a high fitness cost on An.coluzzii populations. The addition of new tools targeting specifically larval stages could improve malaria vectors control and insecticide resistance management.


Sign in / Sign up

Export Citation Format

Share Document