Characterization of polymeric nanofiltration membranes for systematic analysis of membrane performance

2006 ◽  
Vol 278 (1-2) ◽  
pp. 418-427 ◽  
Author(s):  
K. Boussu ◽  
Y. Zhang ◽  
J. Cocquyt ◽  
P. Van der Meeren ◽  
A. Volodin ◽  
...  
Author(s):  
Meltem Ağtaş ◽  
Türkan Ormancı-Acar ◽  
Başak Keskin ◽  
Türker Türken ◽  
İsmail Koyuncu

Abstract In this study, commercial nanofiltration membranes (Toray, NF 270, Desal 5 L) were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, optical profilometry, contact angle, mechanical strength and zeta potential measurements. Filtration performance tests were conducted with distilled water, MgSO4 solution and synthetic dye solutions, respectively. Among three commercial membranes, the Toray membrane was thought to be better choice. Additional experiments were carried out for a more detailed characterization of the selected membrane. Therefore, firstly, flux and removal efficiency was monitored by using dye solutions at different pH values, and then experiments were carried out to observe the effect of different temperatures. Also, another filtration test with NaCl solution was performed for the Toray membrane. As the main purpose of this study, we aimed to establish a significant correlation between the structural properties of membranes and their performances. In light of the results obtained, it was observed that the contact angle, mechanical strength and surface roughness values of the membrane significantly affected the membrane performance. It was concluded that the most important parameter in dye removal was the zeta potential. As a result of this work, a data set of commercial membranes was created and is available to all membrane users.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4557
Author(s):  
Mariusz Król ◽  
Przemysław Snopiński ◽  
Marek Pagáč ◽  
Jiří Hajnyš ◽  
Jana Petrů

In this work, a systematic analysis of the hot deformation mechanism and a microstructure characterization of an as-cast single α-phase Mg–4.5 Li–1.5 Al alloy modified with 0.2% TiB addition, as a grain refiner, is presented. The optimized constitutive model and hot working terms of the Mg–Li alloy were also determined. The hot compression procedure of the Mg–4.5 Li–1.5 Al + 0.2 TiB alloy was performed using a DIL 805 A/D dilatometer at deformation temperatures from 250 °C to 400 °C and with strain rates of 0.01–1 s−1. The processing map adapted from a dynamic material model (DMM) of the as-cast alloy was developed through the superposition of the established instability map and power dissipation map. By considering the processing maps and microstructure characteristics, the processing window for the Mg–Li alloy were determined to be at the deformation temperature of 590 K–670 K and with a strain rate range of 0.01–0.02 s−1.


2020 ◽  
Vol 21 (2) ◽  
pp. 497
Author(s):  
Zhandong Cai ◽  
Peiqi Xian ◽  
Rongbin Lin ◽  
Yanbo Cheng ◽  
Tengxiang Lian ◽  
...  

The IREG (IRON REGULATED/ferroportin) family of genes plays vital roles in regulating the homeostasis of iron and conferring metal stress. This study aims to identify soybean IREG family genes and characterize the function of GmIREG3 in conferring tolerance to aluminum stress. Bioinformatics and expression analyses were conducted to identify six soybean IREG family genes. One GmIREG, whose expression was significantly enhanced by aluminum stress, GmIREG3, was studied in more detail to determine its possible role in conferring tolerance to such stress. In total, six potential IREG-encoding genes with the domain of Ferroportin1 (PF06963) were characterized in the soybean genome. Analysis of the GmIREG3 root tissue expression patterns, subcellular localizations, and root relative elongation and aluminum content of transgenic Arabidopsis overexpressing GmIREG3 demonstrated that GmIREG3 is a tonoplast localization protein that increases transgenic Arabidopsis aluminum resistance but does not alter tolerance to Co and Ni. The systematic analysis of the GmIREG gene family reported herein provides valuable information for further studies on the biological roles of GmIREGs in conferring tolerance to metal stress. GmIREG3 contributes to aluminum resistance and plays a role similar to that of FeIREG3. The functions of other GmIREG genes need to be further clarified in terms of whether they confer tolerance to metal stress or other biological functions.


Membranes ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 70 ◽  
Author(s):  
Nancy Li ◽  
Jackie Zheng ◽  
Pejman Hadi ◽  
Mengying Yang ◽  
Xiangyu Huang ◽  
...  

Despite the advantages of membrane processes, their high energy requirement remains a major challenge. Fabrication of nanocomposite membranes by incorporating various nanomaterials in the polymer matrix has shown promise for enhancing membrane flux. In this study, we embed functionalized cellulose nanofibers (CNFs) with high aspect ratios in the polymer matrix to create hydrophilic nanochannels that reduce membrane resistance and facilitate the facile transport of water molecules through the membrane. The results showed that the incorporation of 0.1 wt % CNF into the polymer matrix did not change the membrane flux (~15 L · m − 2 · h − 1 ) and Bovine Serum Albumin (BSA) Fraction V rejection, while increasing the CNF content to 0.3 wt % significantly enhanced the flux by seven times to ~100 L · m − 2 · h − 1 , but the rejection was decreased to 60–70%. Such a change in membrane performance was due to the formation of hydrophilic nanochannels by the incorporation of CNF (corroborated by the SEM images), decreasing the membrane resistance, and thus enhancing the flux. When the concentration of the CNF in the membrane matrix was further increased to 0.6 wt %, no further increase in the membrane flux was observed, however, the BSA rejection was found to increase to 85%. Such an increase in the rejection was related to the electrostatic repulsion between the negatively-charged CNF-loaded nanochannels and the BSA, as demonstrated by zeta potential measurements. SEM images showed the bridging effect of the CNF in the nanochannels with high CNF contents.


Biofouling ◽  
2010 ◽  
Vol 26 (1) ◽  
pp. 15-21 ◽  
Author(s):  
A. Houari ◽  
D. Seyer ◽  
F. Couquard ◽  
K. Kecili ◽  
C. Démocrate ◽  
...  

2012 ◽  
Vol 10 (1) ◽  
pp. 173 ◽  
Author(s):  
Michel P Bihl ◽  
Anja Foerster ◽  
Alessandro Lugli ◽  
Inti Zlobec

Sign in / Sign up

Export Citation Format

Share Document