Optimization of operating conditions for a continuous membrane distillation crystallization process with zero salty water discharge

2014 ◽  
Vol 450 ◽  
pp. 1-11 ◽  
Author(s):  
Guizi Chen ◽  
Yinghong Lu ◽  
William B. Krantz ◽  
Rong Wang ◽  
Anthony G. Fane
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Elham M. El-Zanati ◽  
Eman Farg ◽  
Esraa Taha ◽  
Ayman El-Guindi ◽  
Heba Abdallah

Abstract Multi-bore hollow fiber membranes were prepared through phase inversion spinning process using new locally designed spinnerets of various geometrical shapes. The spun cylindrical-like, rectangular or ribbon-like, and triangular-like are prepared, dried, and characterized by scanning electronic microscope. Fibers of circular (seven, five, and four bores) shape, rectangular of five bores, and triangular of three bores were chosen to study the effect of both geometrical configuration and the number of bores on the amorphous structure and the mechanical properties of the membranes. Membrane geometry, surface amorphous, and bore arrangements are very sensitive to the operating conditions, especially the extrusion and drawing rates. Three polymeric blends of different compositions are used to prepare multi-bore hollow fiber membranes. This study revealed that the blend composition of PES 16%, PVP 2%, PEG 2%, diethylene glycol 2%, and NMP 78% gives excellent mechanical properties. Optimization of the preparation conditions also developed, where the dope flow rate, the bore flow rate, and the air gap were 1.14 cm3 s−1, 1.1 cm3 s−1, and 0 cm, respectively. Furthermore, this study proved that the circular arrangement has high mechanical strength. The prepared seven-MBHF membranes were applied in the membrane distillation process, a solution of 35 g/l NaCl was used to test the membrane performance, and the achieved flux and rejection were 28.32 L/m2 h and 98.9%, respectively. This performance demonstrated that the prepared membrane in this way is suitable to compete with conventional reverse osmosis technology that uses single track hollow fibers.


2019 ◽  
Vol 5 (7) ◽  
pp. 1202-1221 ◽  
Author(s):  
Youngkwon Choi ◽  
Gayathri Naidu ◽  
Long D. Nghiem ◽  
Sangho Lee ◽  
Saravanamuthu Vigneswaran

This review outlines all the work done on the membrane distillation crystallization process.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1575 ◽  
Author(s):  
Noor A. Mohammad Ameen ◽  
Salah S. Ibrahim ◽  
Qusay F. Alsalhy ◽  
Alberto Figoli

The path for water molecules transported across a membrane in real porous membranes has been considered to be a constant factor in the membrane distillation (MD) process (i.e., constant tortuosity); as such, its effect on membrane performance at various operating conditions has been ignored by researchers. Therefore, a simultaneous heat and mass transfer model throughout the direct contact membrane distillation (DCMD) module was developed in this study by taking into account the hypothetical path across the membrane as a variable factor within the operating conditions because it exhibits the changes to the mass transfer resistance across the membrane under the DCMD run. The DCMD process was described by the developed model using a system of nonlinear equations and solved numerically by MATLAB software. The performance of the poly-tetra-fluoroethylene (PTFE) membrane was examined to treat 200 g/L NaCl saline at various operating conditions. The simulation results in the present work showed that the hypothetical proposed path across the membrane has a variable value and was affected by changing the feed temperature and feed concentration. The results estimated by the developed model showed an excellent conformity with the experimental results. The salt rejection remained high (greater than 99.9%) in all cases. The temperature polarization coefficient for the DCMD ranged between 0.88 and 0.967, and the gain output ratio (GOR) was 0.893. The maximum thermal efficiency of the system was 84.5%.


2014 ◽  
Vol 16 (24) ◽  
pp. 12237-12250 ◽  
Author(s):  
Sergio Morales-Torres ◽  
Tânia L. S. Silva ◽  
Luisa M. Pastrana-Martínez ◽  
Ana T. S. C. Brandão ◽  
José L. Figueiredo ◽  
...  

Buckypapers prepared using CNTs with tailored surface chemistry showed better performance than the commercial PTFE in membrane distillation of salty water.


2016 ◽  
Vol 819 ◽  
pp. 152-159 ◽  
Author(s):  
Paul Byrne ◽  
Yacine Ait Oumeziane ◽  
Laurent Serres ◽  
Thierry Mare

Access to freshwater and energy resource management are two of the major concerns of the next decades. The global warming indicator, the decrease of rainfalls and the growing energy demand for cooling are correlated in the most populated agglomerations of the world. For industrial and social purposes, it seems vital to develop energy efficient systems for cooling and desalination. A heat pump can produce energy for space cooling and heat for desalination. Among the different desalination systems available, membrane distillation seems the most suitable solution to the condensing temperature level of a standard heat pump.This article presents the development of a model of heat pump for simultaneous cooling and desalination by air-gap membrane distillation. The model was first developed using EES software and validated with experimental results from our laboratory and from the literature. The desalination unit was then optimised by numerical means in terms of dimensions and operating conditions using a bi-dimensional model with Matlab. A coupled system with a heat pump was finally simulated. The objective is to estimate the freshwater production depending on the cooling loads of a refrigerator placed in a building submitted to the conditions given by a weather data file in the Trnsys environment. The energy consumptions are compared to those of a standard reverse osmosis plant producing the same amount of freshwater associated to a chiller of same cooling capacity as the heat pump. The results show that the heat pump for simultaneous cooling and desalination offers interesting perspectives.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Atia E. Khalifa

Abstract A comprehensive experimental investigation is conducted to evaluate the performance of a new flux-enhanced compact water gap membrane distillation (WGMD) module design with gap circulation and cooling for water desalination. The new design uses a separate circulation loop to circulate the gap water, and a built-in heat exchanger coil implanted inside the coolant stream channel for cooling the circulated gap water. The WGMD modules with circulation and with circulation and cooling are compared with conventional WGMD without circulation. Variations of distillate flux, temperatures, and energy consumption are presented at different design operating conditions. Circulation and cooling of the gap water greatly enhance the output flux due to gap water motion and increase the temperature difference between membrane surfaces. However, the enhancement in flux was achieved at the expense of energy consumption. Circulation and cooling of gap water are more effective with bigger gap widths. Feed flowrate showed significant effects with gap water circulation and cooling. The electrical specific energy consumption (SEC) showed the best value of 7.9 and 8.8 kWh/m3 at a feed temperature of 70 °C for both conventional WGMD and WGMD with circulation modules, while the best value of SEC for the WGMD module with gap circulation and cooling was 9.4 kWh/m3 at a feed temperature of 80 °C.


Author(s):  
Ankur Deshmukh ◽  
Jayanta Kapat

Abstract Supercritical CO2 Brayton Power cycle is getting commercially attractive for power generation due to its numerous advantages like zero water discharge, compactness, low environmental emission and potential to reach high thermal efficiency. A typical recuperated sCO2 closed cycle consists of three heat exchangers (main heat exchanger, cooler and recuperator) and two turbomachinery (sCO2 turbine and sCO2 compressor). The cooler using ambient air for cooling is the focus of this study. Steady state air cooler model is set up to study the effect of air cooler size on cycle efficiency. The effect of change in ambient air temperature on air cooler pinch point for different air cooler sizes is analyzed using transient air cooler model. The simulation is setup for design of approximately 100MWe sCO2 cycle with operating temperature of 700° C and pressure of 250 barA. Transient calculations are done using LMS AMESim. LMS AMESim is Siemens PLM commercially available software. This work thus serves as a framework to develop a design basis for air cooler in sCO2 cycle as a function of transient operating conditions.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2841
Author(s):  
Lin Chen ◽  
Pei Xu ◽  
Huiyao Wang

High water flux and elevated rejection of salts and contaminants are two primary goals for membrane distillation (MD). It is imperative to study the factors affecting water flux and solute transport in MD, the fundamental mechanisms, and practical applications to improve system performance. In this review, we analyzed in-depth the effects of membrane characteristics (e.g., membrane pore size and distribution, porosity, tortuosity, membrane thickness, hydrophobicity, and liquid entry pressure), feed solution composition (e.g., salts, non-volatile and volatile organics, surfactants such as non-ionic and ionic types, trace organic compounds, natural organic matter, and viscosity), and operating conditions (e.g., temperature, flow velocity, and membrane degradation during long-term operation). Intrinsic interactions between the feed solution and the membrane due to hydrophobic interaction and/or electro-interaction (electro-repulsion and adsorption on membrane surface) were also discussed. The interplay among the factors was developed to qualitatively predict water flux and salt rejection considering feed solution, membrane properties, and operating conditions. This review provides a structured understanding of the intrinsic mechanisms of the factors affecting mass transport, heat transfer, and salt rejection in MD and the intra-relationship between these factors from a systematic perspective.


Sign in / Sign up

Export Citation Format

Share Document