Treatment of secondary effluent with biological activated carbon to reduce fouling of microfiltration membranes caused by algal organic matter from Microcystis aeruginosa

2015 ◽  
Vol 496 ◽  
pp. 125-131 ◽  
Author(s):  
Biplob Kumar Pramanik ◽  
Felicity A. Roddick ◽  
Linhua Fan
2013 ◽  
Vol 316-317 ◽  
pp. 323-326
Author(s):  
Chao Jie Zhang ◽  
Si Bo Li ◽  
Qian Chen ◽  
Qi Zhou

Dissolved organic matter (DOM) may do harms to human beings. After disinfected by chlorine (amine), DOM can form disinfection by-products (DBPs) which can be mutagenic, teratogenic and carcinogenic. Characterization and source of trihalomethane precursors in the secondary effluent by sequencing batch reactors were investigated. CHCl3 was the primary DBPs. The results showed that the precursors of CHCl3 were mainly strongly hydrophobic DOM, while CHCl2Br and CHClBr2 were mainly formed from hydrophilic DOM. The effects of different powder media (activated carbon, zeolite) on removal of DOM were compared. The results showed that the dosing of powder media can promote the removal of DOM and the DBPs precursors.


ACS Omega ◽  
2018 ◽  
Vol 3 (12) ◽  
pp. 16969-16975 ◽  
Author(s):  
Huaijia Xin ◽  
Yulin Tang ◽  
Shulin Liu ◽  
Xin Yang ◽  
Shengji Xia ◽  
...  

2019 ◽  
Vol 5 (12) ◽  
pp. 2232-2241
Author(s):  
Nashita Moona ◽  
Urban J. Wünsch ◽  
Mia Bondelind ◽  
Olof Bergstedt ◽  
Tugba Sapmaz ◽  
...  

Physical and chemical adsorption by aged biological active carbon (BAC) filters were observed for some organic matter fractions, and may represent important removal mechanisms during periods of low microbial activity.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 33 ◽  
Author(s):  
Rui M. C. Viegas ◽  
Elsa Mesquita ◽  
Margarida Campinas ◽  
Maria João Rosa

This paper addresses the enhanced removal of pharmaceutical compounds (PhCs), a family of contaminants of emerging concern, and effluent organic matter (EfOM) in water reclamation by powdered activated carbon/coagulation/ceramic microfiltration (PAC/cMF). Four chemically diverse PhCs are targeted: ibuprofen (IBP), carbamazepine (CBZ), sulfamethoxazole (SMX) and atenolol (ATN). Pilot assays (100 L/(m2 h), 10 mg Fe/L) run with PhC-spiked sand-filtered secondary effluent and 15 mg/L PAC dosed in-line or to a 15-min contactor. They showed no PAC-driven membrane fouling and +15 to +18% added removal with PAC contactor, reaching significant removals of CBZ and ATN (59%–60%), SMX (50%), colour (48%), A254 (35%) and dissolved organic carbon (DOC, 28%). Earlier long-term demo tests with the same pilot proved PAC/cMF to consistently produce highly clarified (monthly median < 0.1 NTU) and bacteria-free water, regardless of the severe variations in its intake. A detailed cost analysis points to total production costs of 0.21 €/m3 for 50,000 m3/day and 20 years membrane lifespan, mainly associated to equipment/membranes replacement, capital and reagents.


2010 ◽  
Vol 62 (7) ◽  
pp. 1682-1688 ◽  
Author(s):  
Y. T. Goh ◽  
J. L. Harris ◽  
F. A. Roddick

Cyanobacterial blooms in the lagoons of sewage treatment plants can severely impact the performance of membrane plants treating the effluent. This paper investigates the impact of Microcystis aeruginosa in a secondary effluent on the microfiltration filterability and cleaning of the membrane. Alum coagulation and dissolved air flotation (DAF) were investigated to remove the algae and so enhance the volume of effluent processed, and their influence on reversible and irreversible fouling. Degree of fouling due to the algal components was found to be in decreasing order of algal cells, algal organic matter and extracellular organic matter. Alum coagulation with 5 mg L−1 as Al3 +  led to a substantial increase in permeate volume, an increase in dissolved organic carbon removal, and a foulant layer which protected the membrane from internal fouling but which was hydraulically removable resulting in full flux recovery. Pre-treatment by DAF or 1.5 μm filtration following alum coagulation enhanced the flux rate and permeate volume but exposed the membrane to internal irreversible fouling.


RSC Advances ◽  
2017 ◽  
Vol 7 (13) ◽  
pp. 7679-7687 ◽  
Author(s):  
Ni Zhang ◽  
Cao Liu ◽  
Fei Qi ◽  
Bingbing Xu

The formation of haloacetamides, as an emerging class of N-DBPs, from AOM disinfection extracted from Microcystis aeruginosa, Scenedesmus quadricauda and Nitzschia palea.


Sign in / Sign up

Export Citation Format

Share Document