Decreased peroxisome proliferator–activated receptor α gene expression is associated with dyslipidemia in a rat model of chronic renal failure

Metabolism ◽  
2007 ◽  
Vol 56 (12) ◽  
pp. 1714-1718 ◽  
Author(s):  
Yusaku Mori ◽  
Tsutomu Hirano ◽  
Masaharu Nagashima ◽  
Yuji Shiraishi ◽  
Tomoyasu Fukui ◽  
...  
2021 ◽  
Vol 9 (T3) ◽  
pp. 124-128
Author(s):  
Yetty Machrina ◽  
Dharma Lindarto ◽  
Yunita Sari Pane ◽  
Novita Sari Harahap

BACKGROUND: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) has an important role in mitochondria biogenesis which generated cellular metabolism. Carbohydrate metabolism in the liver is crucial to maintain plasma blood glucose. AIM: This research aimed to determine the expression of PGC-1α gene in the liver type-2 diabetes mellitus (T2DM) rat model, after treatment with a focus on exercise. METHODS: We used 25 healthy male Wistar rats as subjects. Rats were modified to T2DM models by feeding a high-fat diet and low-dose streptozotocin injection. We divided the rats into five groups, that is, sedentary group as a control and four others as treatment groups. The exercise was assigned for treatment groups by a run on the treadmill as moderate intensity continuous (MIC), highintensity continuous (HIC), slow interval (SI), and fast interval (FI). The treatment groups were exercise throughout 8 weeks with a frequency of 3 times a week. RESULTS: The results showed that expression of PGC-1α gene was lower in all treatment groups compared to controls (p < 0.05). Expression in HIC was higher than MIC (p < 0.05), so was the expression in FI more than SI (p < 0.05). CONCLUSIONS: Exercise affected PGC-1α gene expression in the liver of the T2DM rat model. The expression of PGC-1α was linear with exercise intensity.


2016 ◽  
Vol 31 (suppl_1) ◽  
pp. i194-i194 ◽  
Author(s):  
Sandra Ribeiro ◽  
Patrícia Garrido ◽  
João Fernandes ◽  
Petronila Rocha-Pereira ◽  
Elísio Costa ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 325
Author(s):  
Fatima M. Shakova ◽  
Yuliya I. Kirova ◽  
Denis N. Silachev ◽  
Galina A. Romanova ◽  
Sergey G. Morozov

The pharmacological induction and activation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), a key regulator of ischemic brain tolerance, is a promising direction in neuroprotective therapy. Pharmacological agents with known abilities to modulate cerebral PGC-1α are scarce. This study focused on the potential PGC-1α-modulating activity of Mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) and Semax (ACTH(4–7) analog) in a rat model of photochemical-induced thrombosis (PT) in the prefrontal cortex. Mexidol (100 mg/kg) was administered intraperitoneally, and Semax (25 μg/kg) was administered intranasally, for 7 days each. The expression of PGC-1α and PGC-1α-dependent protein markers of mitochondriogenesis, angiogenesis, and synaptogenesis was measured in the penumbra via immunoblotting at Days 1, 3, 7, and 21 after PT. The nuclear content of PGC-1α was measured immunohistochemically. The suppression of PGC-1α expression was observed in the penumbra from 24 h to 21 days following PT and reflected decreases in both the number of neurons and PGC-1α expression in individual neurons. Administration of Mexidol or Semax was associated with preservation of the neuron number and neuronal expression of PGC-1α, stimulation of the nuclear translocation of PGC-1α, and increased contents of protein markers for PGC-1α activation. This study opens new prospects for the pharmacological modulation of PGC-1α in the ischemic brain.


2015 ◽  
Vol 36 (6) ◽  
pp. 2466-2479 ◽  
Author(s):  
XiaoLe Xu ◽  
Mengzi He ◽  
Tingting Liu ◽  
Yi Zeng ◽  
Wei Zhang

Background/Aims: salusin-ß is considered to be a potential pro-atherosclerotic factor. Regulation and function of vascular smooth muscle cells (VSMCs) are important in the progression of atherosclerosis. Peroxisome proliferator-activated receptor gamma (PPARγ) exerts a vascular protective role beyond its metabolic effects. Salusin-ß has direct effects on VSMCs. The aim of the present study was to assess the effect of salusin-ß on PPARγ gene expression in primary cultured rat VSMCs. Methods: Western blotting analysis, real-time PCR and transient transfection approach were used to determine expression of target proteins. Specific protein knockdown was performed with siRNA transfection. Cell proliferation was determined by 5-bromo-2'-deoxyuridine incorporation. The levels of inflammation indicators interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a) were determined using enzyme-linked immunosorbent assay. Results: Salusin-ß negatively regulated PPARγ gene expression at protein, mRNA and gene promoter level in VSMCs. The inhibitory effect of salusin-ß on PPARγ gene expression contributed to salusin-ß-induced VSMCs proliferation and inflammation in vitro. IγBa-NF-γB activation, but not NF-γB p50 or p65, mediated the salusin-ß-induced inhibition of PPARγ gene expression. Salusin-ß induced nuclear translocation of histone deacetylase 3 (HDAC3). HDAC3 siRNA prevented salusin-ß-induced PPARγ reduction. Nuclear translocation of HDAC3 in response to salusin-ß was significantly reversed by an IγBa inhibitor BAY 11-7085. Furthermore, IγBa-HDAC3 complex was present in the cytosol of VSMCs but interrupted after salusin-ß treatment. Conclusion: IγBa-HDAC3 pathway may contribute to salusin-ß-induced inhibition of PPARγ gene expression in VSMCs.


2009 ◽  
Vol 284 (24) ◽  
pp. 16541-16552 ◽  
Author(s):  
Üzen Savas ◽  
Daniel E. W. Machemer ◽  
Mei-Hui Hsu ◽  
Pryce Gaynor ◽  
Jerome M. Lasker ◽  
...  

CYP4A11 transgenic mice (CYP4A11 Tg) were generated to examine in vivo regulation of the human CYP4A11 gene. Expression of CYP4A11 in mice yields liver and kidney P450 4A11 levels similar to those found in the corresponding human tissues and leads to an increased microsomal capacity for ω-hydroxylation of lauric acid. Fasted CYP4A11 Tg mice exhibit 2–3-fold increases in hepatic CYP4A11 mRNA and protein, and this response is absent in peroxisome proliferator-activated receptor α (PPARα) null mice. Dietary administration of either of the PPARα agonists, fenofibrate or clofibric acid, increases hepatic and renal CYP4A11 levels by 2–3-fold, and these responses were also abrogated in PPARα null mice. Basal liver CYP4A11 levels are reduced differentially in PPARα−/− females (>95%) and males (<50%) compared with PPARα−/+ mice. Quantitative and temporal differences in growth hormone secretion are known to alter hepatic lipid metabolism and to underlie sexually dimorphic gene expression, respectively. Continuous infusion of low levels of growth hormone reduced CYP4A11 expression by 50% in PPARα-proficient male and female transgenic mice. A larger decrease was observed for the expression of CYP4A11 in PPARα−/− CYP4A11 Tg male mice to levels similar to that of female PPARα-deficient mice. These results suggest that PPARα contributes to the maintenance of basal CYP4A11 expression and mediates CYP4A11 induction in response to fibrates or fasting. In contrast, increased exposure to growth hormone down-regulates CYP4A11 expression in liver.


Sign in / Sign up

Export Citation Format

Share Document