ROR-Alpha May Indirectly Regulate Insulin Resistance Related Lipid Metabolism Genes Through miR-19a-3p And miR-26a-5p in Simvastatin Treatment

Metabolism ◽  
2021 ◽  
Vol 116 ◽  
pp. 154692
Author(s):  
Neslihan Coban ◽  
Cagri Gulec
PLoS ONE ◽  
2010 ◽  
Vol 5 (12) ◽  
pp. e14197 ◽  
Author(s):  
Lesley M. L. Hall ◽  
Colin N. Moran ◽  
Gillian R. Milne ◽  
John Wilson ◽  
Niall G. MacFarlane ◽  
...  

Diabetes ◽  
2014 ◽  
Vol 63 (9) ◽  
pp. 3141-3148 ◽  
Author(s):  
C. L. Kurtz ◽  
B. C. E. Peck ◽  
E. E. Fannin ◽  
C. Beysen ◽  
J. Miao ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
D. Serrano ◽  
J. A. Crookshank ◽  
B. S. Morgan ◽  
R. W. Mueller ◽  
M.-F. Paré ◽  
...  

Abstract In a previous study we reported that prediabetic rats have a unique gene signature that was apparent even in neonates. Several of the changes we observed, including enhanced expression of pro-inflammatory genes and dysregulated UPR and metabolism genes were first observed in the liver followed by the pancreas. In the present study we investigated further early changes in hepatic innate immunity and metabolism in two models of type 1 diabetes (T1D), the BBdp rat and NOD mouse. There was a striking increase in lipid deposits in liver, particularly in neonatal BBdp rats, with a less striking but significant increase in neonatal NOD mice in association with dysregulated expression of lipid metabolism genes. This was associated with a decreased number of extramedullary hematopoietic clusters as well as CD68+ macrophages in the liver of both models. In addition, PPARɣ and phosphorylated AMPKα protein were decreased in neonatal BBdp rats. BBdp rats displayed decreased expression of antimicrobial genes in neonates and decreased M2 genes at 30 days. This suggests hepatic steatosis could be a common early feature in development of T1D that impacts metabolic homeostasis and tolerogenic phenotype in the prediabetic liver.


2021 ◽  
Author(s):  
Xue Jiang ◽  
Jie Hao ◽  
Zijian Liu ◽  
Xueting Ma ◽  
Yuxin Feng ◽  
...  

Obesity is characterized by massive fat deposition and is related to a series of metabolic complications, such as insulin resistance (IR) and steatohepatitis. Grifola frondosa (GF) is a basidiomycete fungus...


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Muge Gul Gulecoglu Onem ◽  
Canan Coker ◽  
Kemal Baysal ◽  
Sabahattin Altunyurt ◽  
Pembe Keskinoglu

Abstract Objectives Pregnancy is associated with physiological alterations in insulin sensitivity and lipid metabolism. This study investigates the associations between pregestational body mass index (pBMI) and the rate of gestational weight gain (rGWG) in the second trimester with the biomarkers of lipid, fatty acids metabolism and insulin resistance. Methods Sixty nine pregnant women followed. The body weights of the pregnant women were measured and blood samples were obtained at 11–14th and 24–28th weeks of pregnancy. Glucose, total cholesterol, triglyceride, HDL cholesterol, LDL cholesterol, insulin levels and fatty acids were measured. Rate of GWG (kg/week) and The Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) were calculated. The pregnant women were stratified according to their pBMI and the 2nd trimester rGWG. Results The rate of GWG was significantly higher for the group with pBMI<25, compared to the group with pBMI≥25 (p=0.024). Triglyceride, total cholesterol, LDL and HDL cholesterol were significantly increased in the second trimester compared with the first trimester. Palmitic acid, oleic acid, linoleic acid, myristic acid, docosahexaenoic acid (DHA), arachidonic acid (AA), total omega-6 (n − 6) and omega-3 (n − 3) fatty acid levels and n − 6/n − 3 ratio were significantly higher in the second trimester. Glucose was significantly decreased and insulin was increased in the second trimester. In the overweight/obese group; HOMA-IR, insulin, AA, palmitoleic acid and stearic acid were found to be high in comparison to the group with low/normal pBMI. No parameters were associated with rGWG. Conclusions The changes in lipid parameters, free fatty acids, insulin and HOMA-IR in the second trimester were compatible with the changes in lipid metabolism and the development of insulin resistance. Pregestational BMI was shown to have a stronger influence on lipid profile, insulin resistance, and fatty acids than rGWG.


Diabetes ◽  
2009 ◽  
Vol 58 (10) ◽  
pp. 2220-2227 ◽  
Author(s):  
B. C. Bergman ◽  
L. Perreault ◽  
D. M. Hunerdosse ◽  
M. C. Koehler ◽  
A. M. Samek ◽  
...  

2010 ◽  
Vol 80 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Hsing-Hsien Cheng ◽  
Chien-Ya Ma ◽  
Tsui-Wei Chou ◽  
Ya-Yen Chen ◽  
Ming-Hoang Lai

Gamma-oryzanol is a component of rice bran oil (RBO) with purported health benefits. This study evaluated the effects of gamma-oryzanol on insulin resistance and lipid metabolism in Wistar rats with type 2 diabetes (T2DM). The rats were divided into three groups and consumed one of the following diets for 5 weeks: 15 % soybean oil (control group); 15 % palm oil (PO); and 15 % PO with the addition of 5.25 g gamma-oryzanol (POO). The results showed that PO markedly increased plasma low-density-lipoprotein cholesterol, plasma triglycerides, and hepatic triglyceride levels, but did not reduce the area under the curve for glucose and insulin significantly, compared with the control group. Adding gamma-oryzanol to PO improved the negative influence of PO on lipid metabolism in T2DM rats. In addition, gamma-oryzanol tended to increase insulin sensitivity in T2DM rats compared to control and PO groups. Longer-term studies are needed to evaluate these effects further.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1751
Author(s):  
Saroj Khatiwada ◽  
Virginie Lecomte ◽  
Michael F. Fenech ◽  
Margaret J. Morris ◽  
Christopher A. Maloney

Obesity increases the risk of metabolic disorders, partly through increased oxidative stress. Here, we examined the effects of a dietary micronutrient supplement (consisting of folate, vitamin B6, choline, betaine, and zinc) with antioxidant and methyl donor activities. Male Sprague Dawley rats (3 weeks old, 17/group) were weaned onto control (C) or high-fat diet (HFD) or same diets with added micronutrient supplement (CS; HS). At 14.5 weeks of age, body composition was measured by magnetic resonance imaging. At 21 weeks of age, respiratory quotient and energy expenditure was measured using Comprehensive Lab Animal Monitoring System. At 22 weeks of age, an oral glucose tolerance test (OGTT) was performed, and using fasting glucose and insulin values, Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was calculated as a surrogate measure of insulin resistance. At 30.5 weeks of age, blood and liver tissues were harvested. Liver antioxidant capacity, lipids and expression of genes involved in lipid metabolism (Cd36, Fabp1, Acaca, Fasn, Cpt1a, Srebf1) were measured. HFD increased adiposity (p < 0.001) and body weight (p < 0.001), both of which did not occur in the HS group. The animals fed HFD developed impaired fasting glucose, impaired glucose tolerance, and fasting hyperinsulinemia compared to control fed animals. Interestingly, HS animals demonstrated an improvement in fasting glucose and fasting insulin. Based on insulin release during OGTT and HOMA-IR, the supplement appeared to reduce the insulin resistance developed by HFD feeding. Supplementation increased hepatic glutathione content (p < 0.05) and reduced hepatic triglyceride accumulation (p < 0.001) regardless of diet; this was accompanied by altered gene expression (particularly of CPT-1). Our findings show that dietary micronutrient supplementation can reduce weight gain and adiposity, improve glucose metabolism, and improve hepatic antioxidant capacity and lipid metabolism in response to HFD intake.


Sign in / Sign up

Export Citation Format

Share Document