Precision medicine insight into primary prostate tumor through transcriptomic data and an integrated systems biology approach

Meta Gene ◽  
2020 ◽  
Vol 26 ◽  
pp. 100787
Author(s):  
Mehdi Sadeghi ◽  
Abolfazl Barzegar
2019 ◽  
Vol 42 ◽  
Author(s):  
J. Alfredo Blakeley-Ruiz ◽  
Carlee S. McClintock ◽  
Ralph Lydic ◽  
Helen A. Baghdoyan ◽  
James J. Choo ◽  
...  

Abstract The Hooks et al. review of microbiota-gut-brain (MGB) literature provides a constructive criticism of the general approaches encompassing MGB research. This commentary extends their review by: (a) highlighting capabilities of advanced systems-biology “-omics” techniques for microbiome research and (b) recommending that combining these high-resolution techniques with intervention-based experimental design may be the path forward for future MGB research.


2020 ◽  
Vol 28 ◽  
Author(s):  
Ilaria Granata ◽  
Mario Manzo ◽  
Ari Kusumastuti ◽  
Mario R Guarracino

Purpose: Systems biology and network modeling represent, nowadays, the hallmark approaches for the development of predictive and targeted-treatment based precision medicine. The study of health and disease as properties of the human body system allows the understanding of the genotype-phenotype relationship through the definition of molecular interactions and dependencies. In this scenario, metabolism plays a central role as its interactions are well characterized and it is considered an important indicator of the genotype-phenotype associations. In metabolic systems biology, the genome-scale metabolic models are the primary scaffolds to integrate multi-omics data as well as cell-, tissue-, condition-specific information. Modeling the metabolism has both investigative and predictive values. Several methods have been proposed to model systems, which involve steady-state or kinetic approaches, and to extract knowledge through machine and deep learning. Method: This review collects, analyzes, and compares the suitable data and computational approaches for the exploration of metabolic networks as tools for the development of precision medicine. To this extent, we organized it into three main sections: "Data and Databases", "Methods and Tools", and "Metabolic Networks for medicine". In the first one, we have collected the most used data and relative databases to build and annotate metabolic models. In the second section, we have reported the state-of-the-art methods and relative tools to reconstruct, simulate, and interpret metabolic systems. Finally, we have reported the most recent and innovative studies which exploited metabolic networks for the study of several pathological conditions, not only those directly related to the metabolism. Conclusion: We think that this review can be a guide to researchers of different disciplines, from computer science to biology and medicine, in exploring the power, challenges and future promises of the metabolism as predictor and target of the so-called P4 medicine (predictive, preventive, personalized and participatory).


2010 ◽  
Vol 7 (3) ◽  
Author(s):  
Simon J Cockell ◽  
Jochen Weile ◽  
Phillip Lord ◽  
Claire Wipat ◽  
Dmytro Andriychenko ◽  
...  

SummaryDrug development is expensive and prone to failure. It is potentially much less risky and expensive to reuse a drug developed for one condition for treating a second disease, than it is to develop an entirely new compound. Systematic approaches to drug repositioning are needed to increase throughput and find candidates more reliably. Here we address this need with an integrated systems biology dataset, developed using the Ondex data integration platform, for the in silico discovery of new drug repositioning candidates. We demonstrate that the information in this dataset allows known repositioning examples to be discovered. We also propose a means of automating the search for new treatment indications of existing compounds.


2016 ◽  
Vol 44 (9) ◽  
pp. 2611-2625 ◽  
Author(s):  
Ghassan S. Kassab ◽  
Gary An ◽  
Edward A. Sander ◽  
Michael I. Miga ◽  
Julius M. Guccione ◽  
...  

2012 ◽  
Author(s):  
Hemanth Tummala ◽  
Hilal S. Khalil ◽  
Katarzyna Goszcz ◽  
Maria Grazia Tupone ◽  
Vili Stoyanova ◽  
...  

Author(s):  
Nancy G. Casanova ◽  
Ting Wang ◽  
Eddie T. Chiang ◽  
Joe G. N. Garcia

This chapter briefly reviews the use of genomewide screening for early detection, treatment, and prevention and the utility of genome-based biomarkers as a tool for precision medicine and its application to population and integrative preventive medicine. Advances in technology have made genomic screening more affordable and widely available, and both our understanding and the value of testing grow as more data is collected. Even more recently, the growing availability of epigenetic testing, methylation and ROS-associated molecular signatures are providing more insight into dynamic aspects of the human genome and how lifestyle and IPM change affect the expression of the genome. Early adoption of precision medicine in oncology offers a model that should be expanded into wider areas of treatment and prevention.


Sign in / Sign up

Export Citation Format

Share Document