The FT-IR study of the brain tissue of Labeo rohita due to arsenic intoxication

2009 ◽  
Vol 91 (1) ◽  
pp. 118-124 ◽  
Author(s):  
PL.RM. Palaniappan ◽  
V. Vijayasundaram
Keyword(s):  
Ft Ir ◽  
Ir Study ◽  
2002 ◽  
Vol 16 (3-4) ◽  
pp. 245-250
Author(s):  
V. Crupi ◽  
S. Galli ◽  
D. Majolino ◽  
P. Migliardo ◽  
S. Pergolizzi ◽  
...  

In the present work, we report on a vibrational study performed on rat encephalon samples and on human tissue affected by cancer, using Fourier Transform Infrared absorbance spectroscopy. As the brain rat tissue is concerned, the FT-IR measurements, performed in the CH–OH vibrational stretching region (2400–3800 cm−1), permitted us to reveal the presence of a very diffuse commercial benzodiazepine: VALIUM®. The comparison between the spectral features of normal brain and the ones of samples with administrated substance has unambiguously showed that the CH stretching region seems not to be affected by any change for the pharmacological treatment, instead the OH band is strongly modified probably due to the presence of a new spectral contribution characteristic of diazepam molecule. In the case of skin tissue the investigation was addressed to characterize the presence of two different pathologies, namely epithelioma and basalioma, and to show clear different spectral features passing from the normal tissue to the malignant one in particular in the region (1500–2000 cm−1) which is typical of the lipids vibrational bands.


2008 ◽  
Vol 7 (4) ◽  
pp. 313-319 ◽  
Author(s):  
PL. RM. Palaniappan ◽  
K. S. Pramod ◽  
V. Vijayasundaram
Keyword(s):  
Ft Ir ◽  

2019 ◽  
Vol 15 (3) ◽  
pp. 251-257
Author(s):  
Bahareh Sadat Yousefsani ◽  
Seyed Ahmad Mohajeri ◽  
Mohammad Moshiri ◽  
Hossein Hosseinzadeh

Background:Molecularly imprinted polymers (MIPs) are synthetic polymers that have a selective site for a given analyte, or a group of structurally related compounds, that make them ideal polymers to be used in separation processes.Objective:An optimized molecularly imprinted polymer was selected and applied for selective extraction and analysis of clozapine in rat brain tissue.Methods:A molecularly imprinted solid-phase extraction (MISPE) method was developed for preconcentration and cleanup of clozapine in rat brain samples before HPLC-UV analysis. The extraction and analytical process was calibrated in the range of 0.025-100 ppm. Clozapine recovery in this MISPE process was calculated between 99.40 and 102.96%. The limit of detection (LOD) and the limit of quantification (LOQ) of the assay were 0.003 and 0.025 ppm, respectively. Intra-day precision values for clozapine concentrations of 0.125 and 0.025 ppm were 5.30 and 3.55%, whereas inter-day precision values of these concentrations were 9.23 and 6.15%, respectively. In this study, the effect of lipid emulsion infusion in reducing the brain concentration of drug was also evaluated.Results:The data indicated that calibrated method was successfully applied for the analysis of clozapine in the real rat brain samples after administration of a toxic dose to animal. Finally, the efficacy of lipid emulsion therapy in reducing the brain tissue concentration of clozapine after toxic administration of drug was determined.Conclusion:The proposed MISPE method could be applied in the extraction and preconcentration before HPLC-UV analysis of clozapine in rat brain tissue.


2020 ◽  
Vol 11 (1) ◽  
pp. 241-250
Author(s):  
Zhenyu Li ◽  
Guangqian Ding ◽  
Yudi Wang ◽  
Zelong Zheng ◽  
Jianping Lv

AbstractTranscription factor EB (TFEB)-based gene therapy is a promising therapeutic strategy in treating neurodegenerative diseases by promoting autophagy/lysosome-mediated degradation and clearance of misfolded proteins that contribute to the pathogenesis of these diseases. However, recent findings have shown that TFEB has proinflammatory properties, raising the safety concerns about its clinical application. To investigate whether TFEB induces significant inflammatory responses in the brain, male C57BL/6 mice were injected with phosphate-buffered saline (PBS), adeno-associated virus serotype 8 (AAV8) vectors overexpressing mouse TFEB (pAAV8-CMV-mTFEB), or AAV8 vectors expressing green fluorescent proteins (GFPs) in the barrel cortex. The brain tissue samples were collected at 2 months after injection. Western blotting and immunofluorescence staining showed that mTFEB protein levels were significantly increased in the brain tissue samples of mice injected with mTFEB-overexpressing vectors compared with those injected with PBS or GFP-overexpressing vectors. pAAV8-CMV-mTFEB injection resulted in significant elevations in the mRNA and protein levels of lysosomal biogenesis indicators in the brain tissue samples. No significant changes were observed in the expressions of GFAP, Iba1, and proinflammation mediators in the pAAV8-CMV-mTFEB-injected brain compared with those in the control groups. Collectively, our results suggest that AAV8 successfully mediates mTFEB overexpression in the mouse brain without inducing apparent local inflammation, supporting the safety of TFEB-based gene therapy in treating neurodegenerative diseases.


2020 ◽  
Vol 11 (1) ◽  
pp. 147-160
Author(s):  
Ranyah Shaker M. Labban ◽  
Hanan Alfawaz ◽  
Ahmed T. Almnaizel ◽  
Wail M. Hassan ◽  
Ramesa Shafi Bhat ◽  
...  

AbstractObesity and the brain are linked since the brain can control the weight of the body through its neurotransmitters. The aim of the present study was to investigate the effect of high-fat diet (HFD)-induced obesity on brain functioning through the measurement of brain glutamate, dopamine, and serotonin metabolic pools. In the present study, two groups of rats served as subjects. Group 1 was fed a normal diet and named as the lean group. Group 2 was fed an HFD for 4 weeks and named as the obese group. Markers of oxidative stress (malondialdehyde, glutathione, glutathione-s-transferase, and vitamin C), inflammatory cytokines (interleukin [IL]-6 and IL-12), and leptin along with a lipid profile (cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein levels) were measured in the serum. Neurotransmitters dopamine, serotonin, and glutamate were measured in brain tissue. Fecal samples were collected for observing changes in gut flora. In brain tissue, significantly high levels of dopamine and glutamate as well as significantly low levels of serotonin were found in the obese group compared to those in the lean group (P > 0.001) and were discussed in relation to the biochemical profile in the serum. It was also noted that the HFD affected bacterial gut composition in comparison to the control group with gram-positive cocci dominance in the control group compared to obese. The results of the present study confirm that obesity is linked to inflammation, oxidative stress, dyslipidemic processes, and altered brain neurotransmitter levels that can cause obesity-related neuropsychiatric complications.


2021 ◽  
Vol 11 (7) ◽  
pp. 889
Author(s):  
Anton D. Filev ◽  
Denis N. Silachev ◽  
Ivan A. Ryzhkov ◽  
Konstantin N. Lapin ◽  
Anastasiya S. Babkina ◽  
...  

The overactivation of inflammatory pathways and/or a deficiency of neuroplasticity may result in the delayed recovery of neural function in traumatic brain injury (TBI). A promising approach to protecting the brain tissue in TBI is xenon (Xe) treatment. However, xenon’s mechanisms of action remain poorly clarified. In this study, the early-onset expression of 91 target genes was investigated in the damaged and in the contralateral brain areas (sensorimotor cortex region) 6 and 24 h after injury in a TBI rat model. The expression of genes involved in inflammation, oxidation, antioxidation, neurogenesis and neuroplasticity, apoptosis, DNA repair, autophagy, and mitophagy was assessed. The animals inhaled a gas mixture containing xenon and oxygen (ϕXe = 70%; ϕO2 25–30% 60 min) 15–30 min after TBI. The data showed that, in the contralateral area, xenon treatment induced the expression of stress genes (Irf1, Hmox1, S100A8, and S100A9). In the damaged area, a trend towards lower expression of the inflammatory gene Irf1 was observed. Thus, our results suggest that xenon exerts a mild stressor effect in healthy brain tissue and has a tendency to decrease the inflammation following damage, which might contribute to reducing the damage and activating the early compensatory processes in the brain post-TBI.


Sign in / Sign up

Export Citation Format

Share Document