Preparation of high pore volume γ-Al2O3 nanorods via “gibbsite-AACH” precursor route in a membrane dispersion microreactor

Author(s):  
Fei Li ◽  
Yuqi Wang ◽  
Xiong Gao ◽  
Yujun Wang
Keyword(s):  
2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


2017 ◽  
Vol 54 (2) ◽  
pp. 341-344
Author(s):  
Anda Ionelia Mihai (Voicu) ◽  
Sorina Alexandra Garea ◽  
Eugeniu Vasile ◽  
Cristina Lavinia Nistor ◽  
Horia Iovu

The goal of this paper was to study the modification of porous clay heterostructures (PCHs) with various silane coupling agents. Two commercial coupling agents (3-aminopropyl-triethoxysilane (APTES) and 3-glycidoxypropyl-trimethoxysilane (GPTMS)) with different functional groups (amine and epoxy groups) were used as modifying agents for the PCHs functionalization. The functionalization of PCH with APTES and GPTMS was evaluated by Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA), X-Ray Diffractions (XRD) and BET Analysis. FTIR spectra of modified PCHs confirmed the presence of characteristic peaks of silane coupling agents. TGA results highlighted an increase of weight loss for the modified PCHs that was assigned to the degradation of silane coupling agents (APTES and GPTMS) attached to the PCHs. The XRD results showed that the structure of modified PCHs was influenced by the type of the silane coupling agent. The functionalization of PCHs with silane coupling agents was also confirmed by BET analysis. Textural parameters (specific surface area (SBET), total pore volume (Vt )) suggested that the modified PCHs exhibit lower values of SBET and a significant decrease of total pore volume than unmodified PCHs.


2018 ◽  
Vol 1 (4) ◽  
pp. 1734-1741 ◽  
Author(s):  
Kazuhiko Maeda ◽  
Yuki Tokunaga ◽  
Keisuke Hibino ◽  
Kotaro Fujii ◽  
Hiroyuki Nakaki ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3781
Author(s):  
Tianyu Wang ◽  
Yahong Zhao ◽  
Baosong Ma ◽  
Cong Zeng

The acid–alkaline-inducd corrosive environments inside wastewater concrete pipelines cause concrete structural deterioration and substantial economic losses all over the world. High-performance concrete/mortar (HPC) was designed to have better resistance to corrosive environments, with enhanced service life. However, the durability of HPC in wastewater pipeline environments has rarely been studied. A high-performance mortar mixture (M) reinforced by supplemental materials (including fly ash and silica fume) and polyvinyl alcohol (PVA) fibers, together with a mortar mixture (P) consisting of cement, sand and water with similar mechanical performance, were both designed and exposed to simulated wastewater pipeline environments. The visual appearance, dimensional variation, mass loss, mechanical properties, permeable pore volume, and microstructure of the specimens were measured during the corrosion cycles. More severe deterioration was observed when the alkaline environment was introduced into the corrosion cycles. Test results showed that the M specimens had less permeable pore volume, better dimensional stability, and denser microstructure than the P specimens under acid–alkaline-induced corrosive environments. The mass-loss rates of the M specimens were 66.1–77.2% of the P specimens after 12 corrosion cycles. The compressive strength of the M specimens was 25.5–37.3% higher than the P specimens after 12 cycles under corrosive environments. Hence, the high-performance mortar examined in this study was considered superior to traditional cementitious materials for wastewater pipeline construction and rehabilitation.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2736
Author(s):  
Zuiliang Deng ◽  
Guimin Lu ◽  
Lefeng Fu ◽  
Weishan Wang ◽  
Baicun Zheng

The aim of this paper is to study the adsorption behavior of polycarboxylate superplasticizers (PCE) on coarse aggregates with a property of high water consumption (above 2%). The coarse aggregates were ground into a powder to create large bibulous stone powder, and it was observed that significant amounts of the ether-based PCE were absorbed onto large bibulous stone powder. The adsorption rate immediately reached a maximum after 5 min and then gradually decreased until an equilibrium absorption was established after 30 min. Zeta potential, infrared spectroscopy, and thermogravimetric analysis (TGA) measurements confirmed that the polycarboxylate superplasticizer adsorbed on the surface of the stone powder. Hydrodynamic diameter measurements showed that the polycarboxylate superplasticizer molecules were smaller than pore size, and the surface area and pore volume were reduced by the polymer incorporation in the pores.


Sign in / Sign up

Export Citation Format

Share Document