Structure oriented compact model for advanced trench IGBTs without fitting parameters for extreme condition: Part I

2011 ◽  
Vol 51 (9-11) ◽  
pp. 1933-1937 ◽  
Author(s):  
M. Tanaka ◽  
I. Omura
2014 ◽  
Vol 54 (9-10) ◽  
pp. 1891-1896 ◽  
Author(s):  
J. Takaishi ◽  
S. Harada ◽  
M. Tsukuda ◽  
I. Omura

1989 ◽  
Vol 32 (3) ◽  
pp. 681-687 ◽  
Author(s):  
C. Formby ◽  
B. Albritton ◽  
I. M. Rivera

We describe preliminary attempts to fit a mathematical function to the slow-component eye velocity (SCV) over the time course of caloric-induced nystagmus. Initially, we consider a Weibull equation with three parameters. These parameters are estimated by a least-squares procedure to fit digitized SCV data. We present examples of SCV data and fitted curves to show how adjustments in the parameters of the model affect the fitted curve. The best fitting parameters are presented for curves fit to 120 warm caloric responses. The fitting parameters and the efficacy of the fitted curves are compared before and after the SCV data were smoothed to reduce response variability. We also consider a more flexible four-parameter Weibull equation that, for 98% of the smoothed caloric responses, yields fits that describe the data more precisely than a line through the mean. Finally, we consider advantages and problems in fitting the Weibull function to caloric data.


2010 ◽  
Vol E93-C (8) ◽  
pp. 1349-1358
Author(s):  
Kenta YAMADA ◽  
Toshiyuki SYO ◽  
Hisao YOSHIMURA ◽  
Masaru ITO ◽  
Tatsuya KUNIKIYO ◽  
...  
Keyword(s):  

2020 ◽  
Vol 2020 (14) ◽  
pp. 378-1-378-7
Author(s):  
Tyler Nuanes ◽  
Matt Elsey ◽  
Radek Grzeszczuk ◽  
John Paul Shen

We present a high-quality sky segmentation model for depth refinement and investigate residual architecture performance to inform optimally shrinking the network. We describe a model that runs in near real-time on mobile device, present a new, highquality dataset, and detail a unique weighing to trade off false positives and false negatives in binary classifiers. We show how the optimizations improve bokeh rendering by correcting stereo depth misprediction in sky regions. We detail techniques used to preserve edges, reject false positives, and ensure generalization to the diversity of sky scenes. Finally, we present a compact model and compare performance of four popular residual architectures (ShuffleNet, MobileNetV2, Resnet-101, and Resnet-34-like) at constant computational cost.


2020 ◽  
Vol 15 (7) ◽  
pp. 732-740
Author(s):  
Neetu Kumari ◽  
Anshul Verma

Background: The basic building block of a body is protein which is a complex system whose structure plays a key role in activation, catalysis, messaging and disease states. Therefore, careful investigation of protein structure is necessary for the diagnosis of diseases and for the drug designing. Protein structures are described at their different levels of complexity: primary (chain), secondary (helical), tertiary (3D), and quaternary structure. Analyzing complex 3D structure of protein is a difficult task but it can be analyzed as a network of interconnection between its component, where amino acids are considered as nodes and interconnection between them are edges. Objective: Many literature works have proven that the small world network concept provides many new opportunities to investigate network of biological systems. The objective of this paper is analyzing the protein structure using small world concept. Methods: Protein is analyzed using small world network concept, specifically where extreme condition is having a degree distribution which follows power law. For the correct verification of the proposed approach, dataset of the Oncogene protein structure is analyzed using Python programming. Results: Protein structure is plotted as network of amino acids (Residue Interaction Graph (RIG)) using distance matrix of nodes with given threshold, then various centrality measures (i.e., degree distribution, Degree-Betweenness correlation, and Betweenness-Closeness correlation) are calculated for 1323 nodes and graphs are plotted. Conclusion: Ultimately, it is concluded that there exist hubs with higher centrality degree but less in number, and they are expected to be robust toward harmful effects of mutations with new functions.


2020 ◽  
Vol 96 (3s) ◽  
pp. 612-614
Author(s):  
В.В. Елесина ◽  
И.О. Метелкин

Проведен анализ случаев возникновения тиристорного эффекта в СВЧ ИС, изготовленных по технологии SiGe БиКМОП, при воздействии ионизирующего излучения. Рассмотрены области СВЧ ИС, чувствительные к возникновению ТЭ, определены основные параметры тиристорных структур. Проведена апробация подхода к восстановлению параметров схемно-топологической радиационно-ориентированной модели тиристорной структуры для САПР. The paper analyzes ionizing radiation induced latchup in microwave SiGe BiCMOS integrated circuits (ICs). Critical parts of ICs sensitive to latchup have been identified and basic parameters of corresponding parasitic thyristor structures have been determined. An approach has been approved to the thyristor structure compact model parameters extraction procedure intended for use in CAD systems.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Wangze Ni ◽  
Zhen Dong ◽  
Bairun Huang ◽  
Yichi Zhang ◽  
Zhuojun Chen

Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 87
Author(s):  
Nicholas A. Jones ◽  
Jason Clark

This paper presents a structural geometry for increasing piezoelectric deformation, which is suitable for both micro- and macro-scale applications. New and versatile microstructure geometries for actuators can improve device performance, and piezoelectric designs benefit from a high-frequency response, power density, and efficiency, making them a viable choice for a variety of applications. Previous works have presented piezoelectric structures capable of this amplification, but few are well-suited to planar manufacturing. In addition to this manufacturing difficulty, a large number of designs cannot be chained into longer elements, preventing them from operating at the macro-scale. By optimizing for both modern manufacturing techniques and composability, this structure excels as an option for a variety of macro- and micro-applications. This paper presents an analytical compact model of a novel dual-bimorph piezoelectric structure, and shows that this compact model is within 2% of a computer-distributed element model. Furthermore it compares the actuator’s theoretical performance to that of a modern actuator, showing that this actuator trades mechanical efficiency for compactness and weight savings.


Sign in / Sign up

Export Citation Format

Share Document