ТИРИСТОРНЫЙ ЭФФЕКТ В СВЧ ИС, ИЗГОТОВЛЕННЫХ ПО SIGE БИКМОП-ТЕХНОЛОГИЯМ

2020 ◽  
Vol 96 (3s) ◽  
pp. 612-614
Author(s):  
В.В. Елесина ◽  
И.О. Метелкин

Проведен анализ случаев возникновения тиристорного эффекта в СВЧ ИС, изготовленных по технологии SiGe БиКМОП, при воздействии ионизирующего излучения. Рассмотрены области СВЧ ИС, чувствительные к возникновению ТЭ, определены основные параметры тиристорных структур. Проведена апробация подхода к восстановлению параметров схемно-топологической радиационно-ориентированной модели тиристорной структуры для САПР. The paper analyzes ionizing radiation induced latchup in microwave SiGe BiCMOS integrated circuits (ICs). Critical parts of ICs sensitive to latchup have been identified and basic parameters of corresponding parasitic thyristor structures have been determined. An approach has been approved to the thyristor structure compact model parameters extraction procedure intended for use in CAD systems.

2010 ◽  
Vol 5 (2) ◽  
pp. 103-109
Author(s):  
J. Muci ◽  
A. D. Latorre Rey ◽  
F. J. García-Sanchéz ◽  
D. C. Lugo Muñoz ◽  
A. Ortiz-Conde ◽  
...  

A MOSFET model parameters extraction procedure that overcomes the difficulties of separating the effects of source-and-drain series resistance and mobility degradation factor is presented. Instead of the conventional direct fitting, the present procedure involves the use of indirect bidimensional fitting of the source-to-drain resistance of a single device, as obtained from the below-saturation output characteristics measured at several above-threshold gate voltages. The procedure is verified with a simulated long channel FinFET device with externally added resistances and is later applied to experimental planar bulk DRAM MOSFET devices with channel lengths ranging from 0.23μm to 2.0μm. The procedure is shown to be advantageous in terms of computational efficiency and it is appropriate even with high values of externally added series resistances. For the case of devices with various channel lengths, the accuracy of the procedure is improved if the value of RSD is extracted from the shortest channel length. This value of RSD could be used for extracting the other parameters for devices with longer channel.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2798
Author(s):  
Safi Allah Hamadi ◽  
Aissa Chouder ◽  
Mohamed Mounir Rezaoui ◽  
Saad Motahhir ◽  
Ameur Miloud Kaddouri

The identification of actual photovoltaic (PV) model parameters under real operating condition is a crucial step for PV engineering. An accurate and trusted model depends mainly on the accuracy of the model parameters. In this paper, an accurate and enhanced methodology is intended for PV module parameters extraction in outdoor conditions. The proposed methodology combines numerical methods and analytical formulations of the one diode model to derive the five unknown parameters in any operating condition of irradiance and temperature. First, the measured I-V curves at a random weather condition are translated to standard test conditions (i.e., G = 1000 W/m2, T = 25 °C), using translation equations. The second step consists of using an optimization algorithm namely the moth flame algorithm (MFO) to find out the five parameters at standard test conditions. Analytical formulations, at a random irradiance and temperature, are then used to express the unknown parameters at any irradiance and temperature. The proposed approach is validated under outdoor conditions against measured I-V curves at different irradiances and temperatures. The validation has also been performed under dynamic operation where the measured maximum power point coordinates (MPP) are compared to the predicted maximum power points. The obtained results from the adopted hybrid methodology confirm the accuracy of the parameter extraction procedure.


2003 ◽  
Vol 47 (2.3) ◽  
pp. 259-282 ◽  
Author(s):  
D. J. Friedman ◽  
M. Meghelli ◽  
B. D. Parker ◽  
J. Yang ◽  
H. A. Ainspan ◽  
...  

Author(s):  
Lei Qi ◽  
Zhiyuan Shen ◽  
Jianjian Gao ◽  
Guoliang Zhao ◽  
Xiang Cui ◽  
...  

Purpose This paper aims to establish the wideband model of a sub-module in a modular multilevel converter (MMC) and analyze the switch transients of the sub-module. Design/methodology/approach The paper builds an MMC sub-module test circuit and conducts dynamic tests both with and without the bypass thyristor. Then, it builds the wideband model of the MMC sub-module and extracts the model parameters. Finally, based on the wideband model, it simulates the switch transients and analyzes the oscillation mechanism. Findings The dynamic testing shows the bypass thyristor will add oscillations during switch transients, especially during the turn-on process. The thyristor acts like a small capacitor and reduces the total capacitor in the turn-on circuit loop, thus causing under-damped oscillations. Originality/value This paper found that the bypass thyristor will influence the MMC sub-module switch transients under certain circumstances. This paper proposes a partial inductance extraction procedure for the MMC sub-module and builds a wideband model of the sub-module. The wideband model is used to analyze and explain the switch transients, and can be further used for insulated gate bipolar transistor switch oscillation inhibition and sub-module design optimization.


Author(s):  
Yevgeny Shamin ◽  
Dmitry Zhevnenko ◽  
Fedor Meschaninov ◽  
Vladislav Kozhevnikov ◽  
Yevgeny Gornev

The work is devoted to the analysis of various approaches to the problem of the empirical memristor model parameters extraction. A description of the peculiarities of the extraction process is given, and an original version of the extraction algorithm is proposed. The proposed algorithm is compared with other considered ones.


Photonics ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 50 ◽  
Author(s):  
Minoru Fujishima

In terahertz-band communication using ultra-high frequencies, compound semiconductors with superior high-frequency performance have been used for research to date. Terahertz communication using the 300 GHz band has nonetheless attracted attention based on the expectation that an unallocated frequency band exceeding 275 GHz can be used for communication in the future. Research into wireless transceivers using BiCMOS integrated circuits with silicon germanium transistors and advanced miniaturized CMOS integrated circuits has increased in this 300 GHz band. In this paper, we will outline the terahertz communication technology using silicon integrated circuits available from mass production, and discuss its applications and future.


Solar Energy ◽  
2017 ◽  
Vol 155 ◽  
pp. 478-489 ◽  
Author(s):  
Abdelkader Abbassi ◽  
Rabiaa Gammoudi ◽  
Mohamed Ali Dami ◽  
Othman Hasnaoui ◽  
Mohamed Jemli

Sign in / Sign up

Export Citation Format

Share Document