Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases

2005 ◽  
Vol 63 (2) ◽  
pp. 135-144 ◽  
Author(s):  
Lia Rossetti ◽  
Giorgio Giraffa
2020 ◽  
Vol 8 (10) ◽  
pp. 1578 ◽  
Author(s):  
Massimo Iorizzo ◽  
Gianfranco Pannella ◽  
Silvia Jane Lombardi ◽  
Sonia Ganassi ◽  
Bruno Testa ◽  
...  

Lactic acid bacteria could positively affect the health of honey bees, including nutritional supplementation, immune system development and pathogen colonization resistance. Based on these considerations the present study evaluated predominant Lactic Acid Bacteria (LAB) species from beebread as well as from the social stomach and midgut of Apis mellifera ligustica honey bee foragers. In detail, for each compartment, the diversity in species and biotypes was ascertained through multiple culture-dependent approaches, consisting of Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE), 16S rRNA gene sequencing and Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR). The study of a lactic acid bacteria community, performed with PCR-DGGE and sequence analysis targeting the V1–V3 region of the 16S rRNA gene (rDNA), highlighted the presence of a few species, including Apilactobacillus kunkeei, Lactiplantibacillus plantarum, Fructobacillus fructosus, Levilactobacillus brevis and Lactobacillus delbrueckii subsp. lactis. Depending on the different compartments, diverse levels of biodiversity in species were found. Particularly, a very low inter-species biodiversity was detected in the midgut that was prevalently dominated by the presence of Apilactobacillus kunkeei. On the other hand, the beebread was characterized by a reasonable biodiversity showing the presence of five species and the predominance of Apilactobacillus kunkeei, Lactiplantibacillus plantarum and Fructobacillus fructosus. The RAPD-PCR analysis performed on the three predominant species allowed the differentiation into several biotypes for each species. Moreover, a relationship between biotypes and compartments has been detected and each biotype was able to express a specific biochemical profile. The biotypes that populated the social stomach and midgut were able to metabolize sugars considered toxic for bees while those isolated from beebread could contribute to release useful compounds with functional properties. Based on this knowledge, new biotechnological approaches could be developed to improve the health of honey bees and the quality of bee products.


2006 ◽  
Vol 73 (3) ◽  
pp. 264-272 ◽  
Author(s):  
Salvatore Coppola ◽  
Vincenzina Fusco ◽  
Rosamaria Andolfi ◽  
Maria Aponte ◽  
Giuseppe Blaiotta ◽  
...  

Microbial diversity of the raw milk for the production of Fior di Latte di Agerola and its changes during cheesemaking were studied. Viable counts showed that at the end of curd ripening, loads of lactic acid bacteria, both mesophilic and thermophilic rods and cocci, higher than those commonly evidenced in similar cheeses produced by using natural or commercial starters, were detected. Identification of 272 isolates, supported by molecular diagnostic aids, evidenced representative cultures of a high number of bacterial taxa of interest as participating in the process, although most of the isolates belonged to Lactococcus lactis and Lactobacillus helveticus species. RAPD-PCR and REA-PFGE biotyping were performed for the isolates of the above species and it was shown that most of the strains isolated from the raw milk occurred during the whole cheesemaking process, and an active role of these strains in the fermentation was supposed. The results offer further proof of the importance of the raw milk as source of technologically interesting strains of lactic acid bacteria capable of driving the fermentation of traditional cheeses.


2020 ◽  
Vol 4 (1) ◽  
pp. 41-47
Author(s):  
Miroslava Kačániová ◽  
Margarita Terentjeva ◽  
Simona Kunová ◽  
Petra Borotová ◽  
Peter Haščík ◽  
...  

Abstract Our study was focused on rapid identification of selected groups of microorganisms from non-smoked cheese made from cow’s milk. The following groups of microorganisms were detected: lactic acid bacteria, total microbial counts, coliforms, yeast and filamentous microscopic fungi. The microbial groups were analyzed depending on sampling month from January to December. The microbial qualtity of samples were evaluated with classical microbiological method and than identified with mass spectrometry. The highest total microbial count was found in July - 3.42 log CFU/g. The presence of coliform bacteria was detected in three samples in the beginning of January and the counts increase in summer months. Microscopic filamentous fungi and yeast were present in all samples during the year with the highest counts during the summer months were observed. Altogether, 25 microbial genera were identified including families Candida, Cryptococcus, Kluyveromyces, Saccharomyces, Rhodotorula, Torulaspora, Yarrowia, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, Streptococcus, Escherichia, Klebsiella, Hafnia, Citrobacter, Bacillus, and Sphingomonas with mass spectrometry method. The lactic acid bacteria are one of the most important group of microorganisms in milk and milk products for production of typical sensory characteristics.


2016 ◽  
Vol 83 (3) ◽  
pp. 383-386 ◽  
Author(s):  
Maria de los Dolores Soto del Rio ◽  
Christian Andrighetto ◽  
Alessandra Dalmasso ◽  
Angiolella Lombardi ◽  
Tiziana Civera ◽  
...  

During the last years the interest in donkey milk has increased significantly mainly because of its compelling functional elements. Even if the composition and nutritional properties of donkey milk are known, its microbiota is less studied. This Research Communication aimed to provide a comprehensive characterisation of the lactic acid bacteria in raw donkey milk. RAPD-PCR assay combined with 16S rDNA sequencing analysis were used to describe the microbial diversity of several donkey farms in the North West part of Italy. The more frequently detected species were: Lactobacillus paracasei, Lactococcus lactis and Carnobacterium maltaromaticum. Less abundant genera were Leuconostoc, Enterococcus and Streptococcus. The yeast Kluyveromyces marxianus was also isolated. The bacterial and biotype distribution notably diverged among the farms. Several of the found species, not previously detected in donkey milk, could have an important probiotic activity and biotechnological potential. This study represents an important insight to the ample diversity of the microorganisms present in the highly selective ecosystem of raw donkey milk.


2020 ◽  
Vol 10 (3) ◽  
pp. 1043
Author(s):  
Michela Palla ◽  
Caterina Cristani ◽  
Manuela Giovannetti ◽  
Monica Agnolucci

The diverse metabolites, positively affecting the nutritional, organoleptic and technological traits of leavened baked goods, are produced by different sourdough lactic acid bacteria (LAB) and yeast strains, as the result of their genetic intraspecific diversity. Therefore, the molecular and functional strain-level characterization of sourdough microbiota is crucial to valorize traditional or origin protected baked end-products, develop innovative starter cultures and design functional cereal-based foods. To this aim, the genetic intraspecific diversity of 96 Lactobacillus sanfranciscensis, 65 Kazachstania humilis and three Saccharomyces cerevisiae characterizing Protected Designation of Origin (PDO) Tuscan bread sourdough, was investigated, using P4, P7 and M13 random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR), (GTG)5 repetitive element sequence-based (rep)-PCR and inter-delta region analyses, respectively. Regarding LAB, the combination of P4, P7 and M13 RAPD-PCR analyses revealed a huge degree of intraspecific variability, discriminating 43 biotypes out of 96 isolates of L. sanfranciscensis. (GTG)5 rep-PCR showed a discriminatory index of 0.95, grouping the 65 K. humilis isolated from PDO Tuscan bread sourdough in 9 biotypes. The high polymorphism among both LAB and yeast isolates of PDO Tuscan bread sourdough outlines a highly complex microbial community structure, whose relative composition and specific physiological characteristics could be responsible for the peculiar organoleptic, rheological, nutritional and potentially nutraceutical features of PDO Tuscan bread.


2019 ◽  
Vol 69 (13) ◽  
pp. 1445-1459 ◽  
Author(s):  
Andréia de Oliveira dos Santos ◽  
Carla Luiza da Silva Ávila ◽  
Célia Soares ◽  
Beatriz Ferreira Carvalho ◽  
Rosane Freitas Schwan ◽  
...  

Abstract Purpose The diversity of lactic acid bacteria (LAB) in silages produced in warm climate countries is not well known. This study aimed to identify and characterise the metabolic and genotypic aspects of autochthonous LAB isolated from corn silage produced in the state of Minas Gerais, Brazil. Methods Eighty-eight LAB were isolated. To evaluate their performance at the strain level, all isolates were distinguished among strains using random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) and repetitive extragenic palindromic PCR (REP-PCR) techniques. The organic acid and ethanol production were determined by high-performance liquid chromatography (HPLC). Result The fingerprints obtained by RAPD-PCR with a M13 primer were more discriminatory than those obtained with the REP-PCR technique using a (GACA)4 primer. Moreover, 28 representative isolates were identified as Lactobacillus acidophilus, L. buchneri, L. casei, L. diolivorans, L. hilgardii, L. paracasei, L. parafarraginis, L. plantarum, L. rhamnosus, L. zeae and Pediococcus acidilactici. Different fingerprinting profiles between isolates within the same species were observed. However, some strains isolated from different silages showed the same band profile, thus suggesting the presence of clusters with high similar fingerprints in silages from various regions. Conclusion A variation in LAB diversity was observed in the silages of the evaluated regions, with L. rhamnosus and L. buchneri showing the highest distribution. Differences in organic acid production were observed among the strains belonging to the same species. This research contributes to a better understanding of the LAB community present in corn silage produced in warm climates. These strains will be studied as potential silage starters.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Kusdianawati KUSDIANAWATI ◽  
Apon Zaenal MUSTOPA ◽  
Fatimah FATIMAH ◽  
Bugi Ratno Budiarto

Abstract. Kusdianawati, Mustopa AZ, Fatimah, Budiarto BR. 2020. Genetic diversity of lactic acid bacteria isolated from Sumbawa horse milk, Indonesia. Biodiversitas 21: 3225-3233. LAB from Sumbawa horse milk has good potential antimicrobial and probiotic agents. It is known, the study on LAB diversity based on its phenotypic characters is difficult to be distinguished. However, the development of molecular characterization based on the genotypic characteristic could be done for LAB diversity analysis. The aim of this study is to obtain the genetic diversity of LAB from Sumbawa horse milk collected from Penyaring Village and Lennanguar Village, Sumbawa, West Nusa Tenggara Indonesia. LAB strains were identified based on their genotypic characteristics, including their randomly amplified polymorphic DNA (RAPD) primers profiles and 16S ribosomal RNA (rRNA) sequences. The result of RAPD-PCR analysis showed 5 clusters of dendrograms resulted from GTG5 and LB2 primer amplification. Based on 16 rRNA sequences result, the phylogenetic tree was constructed and revealed 7 species of LAB i.e: SK 1.5, SKP K.3, SKP K.5, SKP K.9/SKP K.7/M.SKP K.3, SKL K.4, M.SKL K.1/ M.SKL K.5, and SKP K.4 belonging to the species of Enterococcus faecium, Weissella confusa, Lactococcus garvieae, Enterococcus thailandicus, Lactobacillus fermentum, Enterococcus faecalis, and Lactococcus petauri. In this study, the bacteria from Enterococcus sp., Lactococcus garvieae, and Lactococcus petauri existed as a novel of bacteria which means they have not been isolated and identified in Sumbawa horse milk compared to the previous findings.


2009 ◽  
Vol 55 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Jie Yu ◽  
Zhihong Sun ◽  
Wenjun Liu ◽  
Jiachao Zhang ◽  
Tiansong Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document