Chronic adipose tissue inflammation: all immune cells on the stage

2013 ◽  
Vol 19 (8) ◽  
pp. 487-500 ◽  
Author(s):  
Gökhan Cildir ◽  
Semih Can Akıncılar ◽  
Vinay Tergaonkar
2020 ◽  
Vol 40 (5) ◽  
pp. 1110-1122 ◽  
Author(s):  
Prasad Srikakulapu ◽  
Coleen A. McNamara

The immune system plays an important role in obesity-induced adipose tissue inflammation and the resultant metabolic dysfunction, which can lead to hypertension, dyslipidemia, and insulin resistance and their downstream sequelae of type 2 diabetes mellitus and cardiovascular disease. While macrophages are the most abundant immune cell type in adipose tissue, other immune cells are also present, such as B cells, which play important roles in regulating adipose tissue inflammation. This brief review will overview B-cell subsets, describe their localization in various adipose depots and summarize our knowledge about the function of these B-cell subsets in regulating adipose tissue inflammation, obesity-induced metabolic dysfunction and atherosclerosis.


2021 ◽  
pp. 1-27
Author(s):  
Zoi Michailidou ◽  
Mario Gomez-Salazar ◽  
Vasileia Ismini Alexaki

Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.


2020 ◽  
Vol 134 (12) ◽  
pp. 1403-1432 ◽  
Author(s):  
Manal Muin Fardoun ◽  
Dina Maaliki ◽  
Nabil Halabi ◽  
Rabah Iratni ◽  
Alessandra Bitto ◽  
...  

Abstract Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1212-P ◽  
Author(s):  
JURAJ KOSKA ◽  
TRACY OSREDKAR ◽  
D'SOUZA KAREN ◽  
SANDEEP SINHA ◽  
CHRISTIAN MEYER ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 39-OR
Author(s):  
ERIC LONTCHI-YIMAGOU ◽  
SONA KANG ◽  
KEHAO ZHANG ◽  
AKANKASHA GOYAL ◽  
JEE YOUNG YOU ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2032-P
Author(s):  
ANA E. ESPINOSA DE YCAZA ◽  
ESBEN SØNDERGAARD ◽  
MARIA MORGAN-BATHKE ◽  
DANAE A. DELIVANIS ◽  
BARBARA G. CARRANZA LEON ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document