Deformation resistance in the transition from coarse-grained to ultrafine-grained Cu by severe plastic deformation up to 24 passes of ECAP

2011 ◽  
Vol 528 (29-30) ◽  
pp. 8621-8627 ◽  
Author(s):  
W. Blum ◽  
Y.J. Li ◽  
Y. Zhang ◽  
J.T. Wang
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
S. Farè ◽  
N. Lecis ◽  
M. Vedani

A study was carried out on aging behaviour of a 6082 alloy processed by two different severe plastic deformation techniques: ECAP and asymmetric rolling. Both techniques were able to generate an ultrafine-grained structure in samples processed at room temperature. It was stated that severe straining promotes marked changes in the postdeformation aging kinetics. The peaks of β′′/β′ transition phases were anticipated and of progressively reduced intensity over the coarse grained alloy. A further peak accounting for onset of recrystallization also appeared in the most severely deformed samples. Full consistency in peak shape and position was found when comparing materials processed by ECAP and asymmetric rolling. Isothermal aging treatments performed at 180°C revealed that in the severely deformed samples, aging became so fast that the hardness curves continuously decreased due to overwhelming effects of structure restoration. On the contrary, aging at 130°C offers good opportunities for fully exploiting the precipitate hardening effects in the ultrafine-grained alloy.


2016 ◽  
Vol 879 ◽  
pp. 1317-1322 ◽  
Author(s):  
Anna Mogucheva ◽  
Diana Yuzbekova ◽  
Tatiana Lebedkina ◽  
Mikhail Lebyodkin ◽  
Rustam Kaibyshev

The paper reports on the effect of severe plastic deformation on mechanical properties of an Al-4.57Mg-0.35Mn-0.2Sc-0.09Zr (in wt. pct.) alloy processed by equal channel angular pressing followed by cold rolling (CR). The sheets of the 5024 alloy with coarse grained (CG) structure exhibited a yield stress (YS) near 410 MPa and an ultimate tensile strength (UTS) of 480 MPa, while the YS and UTS of this material with ultrafine-grained (UFG) structure increased to 530 and 560 MPa, respectively. On the other hand, the elongation to failure decreased by a factor of 2 and 4 after CR and CR following ECAP, respectively. It was shown that dislocation strengthening attributed to extensive CR plays a major role in achieving high strength of this alloy. Besides these macroscopic characteristics, jerky flow caused by the Portevin-Le Chatelier (PLC) instability of plastic deformation was examined. The formation of UFG structure results in a transition from mixed type A+B to pure type B PLC serrations. No such effect on the serrations type was observed after CR.


2011 ◽  
Vol 683 ◽  
pp. 137-148 ◽  
Author(s):  
Vladimir V. Stolyarov

Systematized literature data related to the study of mechanical and functional properties of ultrafine-grained and nanostructured metallic materials processed by deformation methods are presented. Special attention is given to the mechanical behavior of titanium materials under tension, as well as under impact and cyclic loads. The advantage of the materials under investigation over their coarse-grained analogues is shown.


2010 ◽  
Vol 667-669 ◽  
pp. 1183-1187 ◽  
Author(s):  
Evgeny V. Naydenkin ◽  
Ilya V. Ratochka ◽  
Galina P. Grabovetskaya

The mechanical and physical properties of ultrafine-grained titanium alloys produced by severe plastic deformation are considered. It is found that the formation of ultrafine-grained structure in these materials causes a significant enhancement in their mechanical properties at room temperature and in their resistance to hydrogen embrittlement as well as a change in their acoustic properties. Moreover, superplasticity is realized in these materials at less elevated temperatures relative to the respective coarse grained counterparts. It is shown that the above changes in material properties permit optimization of conditions by the production of items from the titanium alloys, e.g. medical implants having the requisite strength and stepped waveguides having long life even in the high power density conditions of an ultrasound system.


1999 ◽  
Vol 32 (1-4) ◽  
pp. 321-339 ◽  
Author(s):  
I. V. Alexandrov ◽  
V. N. Serebryany ◽  
L. N. Sarvarova ◽  
M. V. Alexandrova ◽  
R. Z. Valiev

It was shown that in ultrafine-grained nanostructured Cu processed by severe plastic deformation and subjected to cold rolling and annealing, the level and character of Young's modulus anisotropy is significantly different from values corresponding to cold rolled and annealed coarse-grained Cu. The crystallographic texture formation processes are investigated in these states in parallel. The comparative study of the elastic behaviour and crystallographic texture lets us draw conclusions concerning the leading role of not only developing crystallographic texture but a specific defect structure of grain boundaries as well in the formation of unusual elastic properties of ultrafine-grained materials processed by severe plastic deformation.


2007 ◽  
Vol 124-126 ◽  
pp. 1325-1328
Author(s):  
Dong Hyuk Shin ◽  
Duck Young Hwang ◽  
Jung Yong Ahn ◽  
Kyung Tae Park ◽  
Yong Suk Kim ◽  
...  

Ultrafine grained materials fabricated by severe plastic deformation exhibit both superior and inferior mechanical properties, as the prominent structural materials, compared to coarse grained counterparts. The superior mechanical properties are ultrahigh strength and exceptional ductility at high temperatures (i.e., superplasticity). The inferior mechanical properties are lack of strain hardenability and room temperature ductility. In this study, the relationship between microstructure and mechanical properties of ultrafine grained materials fabricated by severe plastic deformation is investigated in order to provide insight broadening their future applicability.


2010 ◽  
Vol 667-669 ◽  
pp. 925-930
Author(s):  
S.V. Krymskiy ◽  
Elena Avtokratova ◽  
M.V. Markushev ◽  
Maxim Yu. Murashkin ◽  
O.S. Sitdikov

The effects of severe plastic deformation (SPD) by isothermal rolling at the temperature of liquid nitrogen combined with prior- and post-SPD heat treatment, on microstructure and hardness of Al-4.4%Cu-1.4%Mg-0.7%Mn (D16) alloy were investigated. It was found no nanostructuring even after straining to 75%. Сryodeformation leads to microshear banding and processing the high-density dislocation substructures with a cell size of ~ 100-200 nm. Such a structure remains almost stable under 1 hr annealing up to 200oC and with further temperature increase initially transforms to bimodal with a small fraction of nanograins and then to uniform coarse grained one. It is found the change in the alloy post–SPD aging response leading to more active decomposition of the preliminary supersaturated aluminum solid solution, and to the alloy extra hardening under aging with shorter times and at lower temperatures compared to T6 temper.


2006 ◽  
Vol 114 ◽  
pp. 7-18 ◽  
Author(s):  
Ruslan Valiev

During the last decade severe plastic deformation (SPD) has become a widely known method of materials processing used for fabrication of ultrafine-grained materials with attractive properties. Nowadays SPD processing is rapidly developing and is on the verge of a transition from lab-scale research to commercial production. This paper focuses on several new trends in the development of SPD techniques for effective grain refinement, including those for commercial alloys and presents new SPD processing routes to produce bulk nanocrystalline materials.


2010 ◽  
Vol 667-669 ◽  
pp. 253-258
Author(s):  
Wei Ping Hu ◽  
Si Yuan Zhang ◽  
Xiao Yu He ◽  
Zhen Yang Liu ◽  
Rolf Berghammer ◽  
...  

An aged Al-5Zn-1.6Mg alloy with fine η' precipitates was grain refined to ~100 nm grain size by severe plastic deformation (SPD). Microstructure evolution during SPD and mechanical behaviour after SPD of the alloy were characterized by electron microscopy and tensile, compression as well as nanoindentation tests. The influence of η' precipitates on microstructure and mechanical properties of ultrafine grained Al-Zn-Mg alloy is discussed with respect to their effect on dislocation configurations and deformation mechanisms during processing of the alloy.


Sign in / Sign up

Export Citation Format

Share Document