Friction stir butt-welding of roll cladded aluminum thin sheets: Effect of microstructural and texture changes on mechanical properties

Author(s):  
Soumyabrata Basak ◽  
Mounarik Mondal ◽  
Kun Gao ◽  
Sung-Tae Hong ◽  
Sam Yaw Anaman ◽  
...  
Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 970 ◽  
Author(s):  
Dejia Liu ◽  
Yanchuan Tang ◽  
Mingxue Shen ◽  
Yong Hu ◽  
Longzhi Zhao

Friction stir welding (FSW) is a promising approach for the joining of magnesium alloys. Although many Mg alloys have been successfully joined by FSW, it is far from industrial applications due to the texture variation and low mechanical properties. This short review deals with the fundamental understanding of weak zones from the viewpoint of texture analysis in FSW Mg alloys, especially for butt welding. Firstly, a brief review of the microstructure and mechanical properties of FSW Mg alloys is presented. Secondly, microstructure and texture evolutions in weak zones are analyzed and discussed based on electron backscatter diffraction data and Schmid factors. Then, how to change the texture and strengthen the weak zones is also presented. Finally, the review concludes with some future challenges and research directions related to the texture in FSW Mg alloys. The purpose of the paper is to provide a basic understanding on the location of weak zones as well as the weak factors related to texture to improve the mechanical properties and promote the industrial applications of FSW Mg alloys.


2014 ◽  
Vol 622-623 ◽  
pp. 459-466 ◽  
Author(s):  
Michela Simoncini ◽  
Lorenzo Panaccio ◽  
Archimede Forcellese

The present investigation aims at studying post-welding forming operations of friction stir welded AA1050 aluminium thin sheets. A preliminary investigation has allowed to define the rotational and welding speed values leading to friction stir welded joints with high mechanical properties. Then, formability and elastic springback were evaluated using the hemispherical punch and bending tests, respectively. A microstructural investigation has allowed to relate the mechanical properties of joints to microstructure. Finally, the friction stir welded assemblies were subjected to air bending and stamping experiments in order to evaluate their attitude to undergo to sheet metal forming operations.


2019 ◽  
Vol 26 (4) ◽  
pp. 47-52
Author(s):  
Krzysztof Dudzik

AbstractThe article presents the research results on the mechanical properties of aluminum alloy AW-5083 and its joints welded by hybrid method – traditional MIG and FSW. AW-5083 alloy is the most currently used in shipbuilding industry. Friction Stir Welding (FSW) – a new technology can be successfully used for butt-welding of different types of aluminum alloy sheets. FSW method can be an alternative to traditional arc welding methods i.e. MIG or TIG. Hybrid welding (FSW with MIG or TIG) could be used in cases when joining only by FSW is not possible. Welding parameters used for the connection of the sheets were presented. Metallographic analysis showed the correct construction of structural bonded joints. The research was carried out using a static tensile test in accordance with the requirements of the Standard PN-EN ISO 4136:2013-05. Flat samples cut perpendicular to the direction of rolling were used. The research was conducted at the temperature of +20ºC. The test shows that the mechanical properties of joints made by hybrid method compered to native material were lower. The tensile strength of joint was lower by 20% then native material 5083 while its yield stress was lower only about 6%. The biggest change was observed in case of plastic properties. Elongation of joint was over 50% lower compared to native material. Despite the decrease of mechanical properties, they meets the requirements of classification societies, so the conclusion is that hybrid method (FSW and MIG) of joining AW-5083 can be applied in shipbuilding industry.


2021 ◽  
Vol 93 (2) ◽  
pp. 5-12
Author(s):  
Miloš Mičian ◽  
Martin Frátrik ◽  
Libor Trško ◽  
Marek Gucwa ◽  
Jerzy Winczek ◽  
...  

The paper presents the application of MAG welding to TMCP steels (thermo-mechanically controlled processed) grade S960MC and 3 mm thick. In the analyzed joints, the research focused on their mechanical properties and changes in the heat-affected zone (HAZ) that occur in this type of steels. The hardness and tensile strength tests carried out showed a significant decrease in the properties of the joint compared to the declared values of the base material and the filler material used in the tests. In the case of hardness, it was a decrease of 34% in HAZ and by 15-21% in relation to the strength limit. Changes in HAZ properties of a joint correlate with changes in its structure.


Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 9-14 ◽  
Author(s):  
M. Simoncini ◽  
D. Ciccarelli ◽  
A. Forcellese ◽  
M. Pieralisi

2021 ◽  
Vol 55 (5) ◽  
Author(s):  
Sina Zinatlou Ajabshir ◽  
Mohsen Kazeminezhad ◽  
Amir Hossein Kokabi

One of the friction-stir welding (FSW) limitations is joining thin sheets in sheet-metal manufacturing. To solve this limitation, thicker sheets can be welded with FSW and then rolled to a thinner thickness. This can improve the mechanical properties and save the weld zone soundly. In this work, 3-mm aluminum sheets were joined with FSW. The microstructure and mechanical properties of the samples were assessed at various rotational speeds (w) and travel speeds (v). Then, the welded samples were cold worked (CW) by rolling them at different percentages so that the samples were 2 mm and 1 mm thick. The effects of welding and post rolling on the mechanical properties and a failure analysis were deliberated. It was shown that welding reduces the transverse ultimate tensile strength (UTS) of FSWed samples by up to 29 % compared to the UTS of the base metal (BM), while rolling FSWed samples increased the UTS of the cold-worked FSWed samples by up to 94.7 % in comparison to the UTS of FSWed samples. Also, during the tensile test of the specimens FSWed at a lower travel speed, a fracture occurred at the stir zone (SZ)/thermo-mechanically affected zone (TMAZ) interface, on the advancing part; however, at a higher travel speed, it occurred at the interface of the heat-affected zone (HAZ) and TMAZ, on the retreating part. Moreover, during the tensile test of the cold-worked FSWed samples, the failure took place at the HAZ and the interface of the SZ and TMAZ, respectively. The UTS was risen by increasing the cold work. The UTS of a specimen FSWed at 50 mm/min and 1200 min–1 went up from 76 MPa to 124 MPa due to 33-% cold work and to 148 MPa due to 66-% cold work; meanwhile, the fracture occurred at the SZ/TMAZ interface or TMAZ of most of the post-rolled FSWed samples.


Sign in / Sign up

Export Citation Format

Share Document