Modified microstructure, magnetic and ferroelectric properties in narrow bandgap Bi0.5Na0.5Ti1-Co O3 ceramics

2022 ◽  
Vol 277 ◽  
pp. 115590
Author(s):  
Dongliang Zheng ◽  
Hongmei Deng ◽  
Shufang Si ◽  
Jiejin Yu ◽  
Pingxiong Yang ◽  
...  
Author(s):  
S. G. Ghonge ◽  
E. Goo ◽  
R. Ramesh ◽  
R. Haakenaasen ◽  
D. K. Fork

Microstructure of epitaxial ferroelectric/conductive oxide heterostructures on LaAIO3(LAO) and Si substrates have been studied by conventional and high resolution transmission electron microscopy. The epitaxial films have a wide range of potential applications in areas such as non-volatile memory devices, electro-optic devices and pyroelectric detectors. For applications such as electro-optic devices the films must be single crystal and for applications such as nonvolatile memory devices and pyroelectric devices single crystal films will enhance the performance of the devices. The ferroelectric films studied are Pb(Zr0.2Ti0.8)O3(PLZT), PbTiO3(PT), BiTiO3(BT) and Pb0.9La0.1(Zr0.2Ti0.8)0.975O3(PLZT).Electrical contact to ferroelectric films is commonly made with metals such as Pt. Metals generally have a large difference in work function compared to the work function of the ferroelectric oxides. This results in a Schottky barrier at the interface and the interfacial space charge is believed to responsible for domain pinning and degradation in the ferroelectric properties resulting in phenomenon such as fatigue.


2013 ◽  
Vol 27 (11) ◽  
pp. 1228-1232 ◽  
Author(s):  
Hua-Lei CHENG ◽  
Hong-Liang DU ◽  
Wan-Cheng ZHOU ◽  
Fa LUO ◽  
Dong-Mei ZHU

2020 ◽  
Vol 65 (12) ◽  
pp. 2066-2071
Author(s):  
E. V. Gushchina ◽  
B. R. Borodin ◽  
V. A. Sharov ◽  
V. V. Osipov ◽  
S. I. Pavlov ◽  
...  

Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Tamara S. Tverdokhlebova ◽  
Ludmila S. Antipina ◽  
Valeriya L. Kudryavtseva ◽  
Ksenia S. Stankevich ◽  
Ilya M. Kolesnik ◽  
...  

Wound healing is a complex process and an ongoing challenge for modern medicine. Herein, we present the results of study of structure and properties of ferroelectric composite polymer membranes for wound healing. Membranes were fabricated by electrospinning from a solution of vinylidene fluoride/tetrafluoroethylene copolymer (VDF–TeFE) and polyvinylpyrrolidone (PVP) in dimethylformamide (DMF). The effects of the PVP content on the viscosity and conductivity of the spinning solution, DMF concentration, chemical composition, crystal structure, and conformation of VDF–TeFE macromolecules in the fabricated materials were studied. It was found that as PVP amount increased, the viscosity and conductivity of the spinning solutions decreased, resulting in thinner fibers. Using FTIR and XRD methods, it was shown that if the PVP content was lower than 50 wt %, the VDF–TeFE copolymer adopted a flat zigzag conformation (TTT conformation) and crystalline phases with ferroelectric properties were formed. Gas chromatography results indicated that an increase in the PVP concentration led to a higher residual amount of DMF in the material, causing cytotoxic effects on 3T3L1 fibroblasts. In vivo studies demonstrated that compared to classical gauze dressings impregnated with a solution of an antibacterial agent, ferroelectric composite membranes with 15 wt % PVP provided better conditions for the healing of purulent wounds.


2021 ◽  
pp. 2101295
Author(s):  
Siying Li ◽  
Xin Yuan ◽  
Qilin Zhang ◽  
Bin Li ◽  
Yuxiang Li ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


Sign in / Sign up

Export Citation Format

Share Document