In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds

2009 ◽  
Vol 29 (5) ◽  
pp. 1527-1534 ◽  
Author(s):  
Qian Fang ◽  
Denglong Chen ◽  
Zhiming Yang ◽  
Min Li
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Zhisen Shen ◽  
Jingjing Chen ◽  
Cheng Kang ◽  
Changfeng Gong ◽  
Yabin Zhu

Porous polymeric scaffolds have been much investigated and applied in the field of tissue engineering research. Poly(ester urethane) (PEU) scaffolds, comprising pores of 1–20 μm in diameter on one surface and ≥200 μm on the opposite surface and in bulk, were fabricated using phase separation method for hypopharyngeal tissue engineering. The scaffolds were grafted with silk fibroin (SF) generated from natural silkworm cocoon to enhance the scaffold’s hydrophilicity and further improve cytocompatibility to both primary epithelial cells (ECs) and fibroblasts of human hypopharynx tissue. Coculture of ECs and fibroblasts was conducted on the SF-grafted PEU scaffold (PEU-SF) to evaluate itsin vitrocytocompatibility. After co-culture for 14 days, ECs were lined on the scaffold surface while fibroblasts were distributed in scaffold bulk. The results ofin vivoinvestigation showed that PEU porous scaffold possessed good biocompatibility after it was grafted by silk fibroin. SF grafting improved the cell/tissue infiltration into scaffold bulk. Thus, PEU-SF porous scaffold is expected to be a good candidate to support the hypopharynx regeneration.


2016 ◽  
Vol 16 (04) ◽  
pp. 1650053
Author(s):  
WENYUAN ZHANG ◽  
YADONG YANG ◽  
KEJI ZHANG ◽  
YING LI ◽  
GUOJIAN FANG

Natural silk fibroin fiber is slowly degraded, which makes it difficult to be replaced quickly by regenerating tissues of tissue engineering. We used poly(lactic-co-glycolic acid) (PLGA, lactic acid:glycolic acid [Formula: see text] 10:90) fibers to adjust the overall degradation rate of the scaffolds. This study fabricated a three-strand helical composite rope-like scaffold from silk fibroin and PLGA fibers (silk fibroin:PLGA [Formula: see text] 36:64) using a twisting method. In vitro and in vivo degradation experiments were performed over 16 weeks. Results suggest that the in vitro and in vivo degradation tendencies of the scaffold were similar, with mass loss lagging behind mechanical property loss. The speed of degradation in vivo was faster than that in vitro. Mechanical property loss of the scaffold was fast during the first three weeks, when mass loss was slow. Mass loss rate accelerated from weeks 3 to 8. The mass and mechanical properties were relatively stable from 8 to 16 weeks. After 16 weeks of degradation, the scaffold still had considerably strong mechanical properties. The scaffold showed a reasonable and suitable degradation speed with good histocompatibility for ligament tissue engineering.


Author(s):  
Mahesh Kumar Sah ◽  
Indranil Banerjee ◽  
Krishna Pramanik

There is a need for high performance scaffold in tissue engineering. Keeping this perspective in mind, the present study delineates the preparation and physico-chemical characterization of soluble eggshell protein (SEP) modified silk fibroin (SF)-polyvinyl alcohol (PVA) scaffold and its application in bone tissue engineering. The SF/PVA scaffold were prepared by salt leaching and modified with eggshell protein. Micro-architechture and porosity analysis revealed that all the scaffolds were having desired pore size (230-360 µm), interconnected porous network and 90% porosity. The scaffolds were found with suitable swelling behavior and biodegradability to support cell proliferation till replaces native osseous tissue. In vitro cyto-compatibility and differentiation study showed that SEP(SF-PVA) supports viability , proliferation and differentiation of cord blood derived human mesenchymal stem cell. Further, in vivo study in mice model showed that the scaffolds are non-immunogenic and support tissue growth. In conclusion, SEP modified SF-PVA scaffold could be a better option for tissue engineering.


2020 ◽  
Vol 91 ◽  
pp. 106698 ◽  
Author(s):  
Zhina Hadisi ◽  
Hamid Reza Bakhsheshi-Rad ◽  
Tavia Walsh ◽  
Mohammad Mehdi Dehghan ◽  
Saeed Farzad-Mohajeri ◽  
...  

2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


2004 ◽  
Vol 83 (02) ◽  
Author(s):  
A Haisch ◽  
A Evers ◽  
K Jöhrens-Leder ◽  
S Jovanovic ◽  
B Sedlmaier ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Wenhao Zhou ◽  
Teng Zhang ◽  
Jianglong Yan ◽  
QiYao Li ◽  
Panpan Xiong ◽  
...  

2020 ◽  
Vol 27 (10) ◽  
pp. 1634-1646 ◽  
Author(s):  
Huey-Shan Hung ◽  
Shan-hui Hsu

Treatment of cardiovascular disease has achieved great success using artificial implants, particularly synthetic-polymer made grafts. However, thrombus formation and restenosis are the current clinical problems need to be conquered. New biomaterials, modifying the surface of synthetic vascular grafts, have been created to improve long-term patency for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic or natural polymers for vascular tissue engineering. Stem cells can be seeded by different techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the vascular tissues. To overcome the thrombogenesis and promote the endothelialization effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue made and have been engineered by various approaches such as prepared as a simple surface coating on the vascular biomaterials. It has now become an important and interesting field to find novel approaches to better endothelization of vascular biomaterials. In this article, we focus to review the techniques with better potential improving endothelization and summarize for vascular biomaterial application. This review article will enable the development of biomaterials with a high degree of originality, innovative research on novel techniques for surface fabrication for vascular biomaterials application.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


Sign in / Sign up

Export Citation Format

Share Document