In vitro growth of calcium carbonate crystals on bivalve shells: Application of two methods of synthesis

2012 ◽  
Vol 32 (5) ◽  
pp. 1158-1163 ◽  
Author(s):  
Michael Zuykov ◽  
Emilien Pelletier ◽  
Julia Anderson ◽  
Tom F. Cotterell ◽  
Claude Belzile ◽  
...  
2007 ◽  
Vol 330-332 ◽  
pp. 1335-1338 ◽  
Author(s):  
Cheng Luo ◽  
Lei Xie ◽  
Xiao Xiang Wang

In an effort to investigate the growth mechanism of nacre, a conventional vapor diffusion method for CaCO3 crystal precipitation was applied to in vitro growth of calcium carbonate on freshwater H. cumingii Lea shell. In a 10mM/L CaCl2 solution without any additives, aragonite deposit was obtained on the nacre surface, specifically at the edges of nacreous tablets. At the early stage of the deposition (up to 4 hr), the deposit did not take any specific form. After 12hr of deposition, the deposit exhibited faceted morphology characteristic of crystalline. Further increasing the deposition time resulted in the formation of well-faceted crystals of tower-like shape. Both Raman spectra and X-ray diffraction patterns showed that the deposit consists of aragonite polymorph of calcium carbonate.


2016 ◽  
Vol 77 (S 01) ◽  
Author(s):  
Ezequiel Goldschmidt ◽  
Jorge Rasmussen ◽  
Joseph Chabot ◽  
Monica Loressi ◽  
Marcelo Ielpi ◽  
...  

Author(s):  
Maryam Muhammad Mailafiya ◽  
Mohamad Aris Mohd Moklas ◽  
Kabeer Abubakar ◽  
Abubakar Danmaigoro ◽  
Samaila Musa Chiroma ◽  
...  

Background: Cockle shell-derived calcium carbonate nanoparticles (CSCaCO3NP) are natural biogenic inorganic material that is used in drug delivery mainly as a bone-remodeling agent as well as a delivery agent for various therapeutics against bone diseases. Curcumin possess wide safety margin and yet puzzled with the problem of poor bioavailability due to insolubility. Propounding in vitro and in vivo studies on toxicity assessments of newly synthesized nanoparticles are ongoing to overcome some crucial challenges regarding their safety administration. Nanotoxicology has paved ways for concise test protocols to monitor sequential events with regards to possible toxicity of newly synthesized nanomaterials. The development of nanoparticle with no or less toxic effect has gained tremendous attentions. Objective: This study aimed at evaluating the in vitro cytotoxic effect of curcumin-loaded cockle shell-derived calcium carbonate nanoparticles (Cur-CSCaCO3NP) and assessing its biocompatibility on normal cells using standard techniques of WST’s assay. Method: Standard techniques of WST’s assay was used for the evaluation of the biocompatibility and cytotoxicity. Result: The result showed that CSCaCO3NP and Cur-CSCaCO3NP possess minimal toxicity and high biocompatibility on normal cells even at higher dose of 500 µg/ml and 40 µg/ml respectively. Conclusion: CSCaCO3NP can be termed an excellent non-toxic nanocarrier for curcumin delivery. Hence, curcumin loaded cockle shell derived calcium carbonate nanoparticles (Cur-CSCaCO3NP) could further be assessed for various in vivo and in vitro therapeutic applications against various bone related ailments.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 932
Author(s):  
Arkadiusz Matuszewski ◽  
Monika Łukasiewicz ◽  
Jan Niemiec ◽  
Maciej Kamaszewski ◽  
Sławomir Jaworski ◽  
...  

The use of intensive selection procedure in modern broiler chicken lines has led to the development of several skeletal disorders in broiler chickens. Therefore, current research is focused on methods to improve the bone quality in birds. In ovo technology, using nanoparticles with a high specificity to bones, is a potential approach. The present study aimed to evaluate the effect of in ovo inoculation (IOI) of calcium carbonate nanoparticles (CCN) on chicken embryo development, health status, bone characteristics, and on broiler production results and bone quality. After assessing in vitro cell viability, the IOI procedure was performed with an injection of 500 μg/mL CCN. The control group was not inoculated with CCN. Hatchability, weight, and selected bone and serum parameters were measured in embryos. Part of hatchlings were reared under standard conditions until 42 days, and production results, meat quality, and bone quality of broilers were determined. CCN did not show cytotoxicity to cells and chicken embryo and positively influenced bone parameters of the embryos and of broilers later (calcification) without negatively affecting the production results. Thus, the IOI of CCN could modify the molecular responses at the stage of embryogenesis, resulting in better mineralization, and could provide a sustained effect, thereby improving bone quality in adult birds.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 102
Author(s):  
Claudia Rode ◽  
Ralf Wyrwa ◽  
Juergen Weisser ◽  
Matthias Schnabelrauch ◽  
Marijan Vučak ◽  
...  

Polyurethanes have the potential to impart cell-relevant properties like excellent biocompatibility, high and interconnecting porosity and controlled degradability into biomaterials in a relatively simple way. In this context, a biodegradable composite material made of an isocyanate-terminated co-oligoester prepolymer and precipitated calcium carbonated spherulites (up to 60% w/w) was synthesized and investigated with regard to an application as bone substitute in dental and orthodontic application. After foaming the composite material, a predominantly interconnecting porous structure is obtained, which can be easily machined. The compressive strength of the foamed composites increases with raising calcium carbonate content and decreasing calcium carbonate particle size. When stored in an aqueous medium, there is a decrease in pressure stability of the composite, but this decrease is smaller the higher the proportion of the calcium carbonate component is. In vitro cytocompatibility studies of the foamed composites on MC3T3-E1 pre-osteoblasts revealed an excellent cytocompatibility. The in vitro degradation behaviour of foamed composite is characterised by a continuous loss of mass, which is slower with higher calcium carbonate contents. In a first pre-clinical pilot trial the foamed composite bone substitute material (fcm) was successfully evaluated in a model of vertical augmentation in an established animal model on the calvaria and on the lateral mandible of pigs.


Sign in / Sign up

Export Citation Format

Share Document