scholarly journals Temperature and magnetism bi-responsive molecularly imprinted polymers: Preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil

2016 ◽  
Vol 61 ◽  
pp. 158-168 ◽  
Author(s):  
Longfei Li ◽  
Lin Chen ◽  
Huan Zhang ◽  
Yongzhen Yang ◽  
Xuguang Liu ◽  
...  
RSC Advances ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 5978-5987 ◽  
Author(s):  
Y. Zhao ◽  
C. Simon ◽  
M. Daoud Attieh ◽  
K. Haupt ◽  
A. Falcimaigne-Cordin

Degradable molecularly imprinted polymers were prepared using redox sensitive cross-linkers and applied as intracellular drug delivery system to address the biocompatibility and cytotoxicity issues encountered with these synthetic polymers.


2010 ◽  
Vol 62 (5) ◽  
pp. 577-582 ◽  
Author(s):  
Giuseppe Cirillo ◽  
Ortensia Ilaria Parisi ◽  
Manuela Curcio ◽  
Francesco Puoci ◽  
Francesca Iemma ◽  
...  

The Analyst ◽  
2021 ◽  
Author(s):  
Ghazaleh Jamalipour Soufi ◽  
Siavash Iravani ◽  
Rajender S Varma

Molecularly imprinted polymers (MIPs) have numerous applications in sensing field, the detection/recognition of virus, the structure determination of proteins, drug delivery, artificial/biomimetic antibodies, drug discovery, and cell culturing. There are...


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3589
Author(s):  
Rui Liu ◽  
Alessandro Poma

Despite the tremendous efforts made in the past decades, severe side/toxic effects and poor bioavailability still represent the main challenges that hinder the clinical translation of drug molecules. This has turned the attention of investigators towards drug delivery vehicles that provide a localized and controlled drug delivery. Molecularly imprinted polymers (MIPs) as novel and versatile drug delivery vehicles have been widely studied in recent years due to the advantages of selective recognition, enhanced drug loading, sustained release, and robustness in harsh conditions. This review highlights the design and development of strategies undertaken for MIPs used as drug delivery vehicles involving different drug delivery mechanisms, such as rate-programmed, stimuli-responsive and active targeting, published during the course of the past five years.


Author(s):  
Mohammad M. Kamal ◽  
Sharmin Akter ◽  
Turki Al Hagbani ◽  
Ahmad Salawi ◽  
Sami Nazzal

2006 ◽  
Vol 316 (1-2) ◽  
pp. 86-92 ◽  
Author(s):  
Mahesh D. Chavanpatil ◽  
Paras Jain ◽  
Sachin Chaudhari ◽  
Rajesh Shear ◽  
Pradeep R. Vavia

Author(s):  
Anupam K Sachan ◽  
Saurabh Singh ◽  
Kiran Kumari ◽  
Pratibha Devi

Microspheres carrier system made from natural or synthetic polymers used in sustained release drug delivery system. The present study involves formulation and evaluation of floating microspheres of Curcumin for improving the drug bioavailability by prolongation gastric residence time. Curcumin, natural hypoglycemic agent is a lipophilic drug, absorbed poorly from the stomach, quickly eliminated and having short half-life so suitable to formulate floating drug delivery system for sustained release. Floating microspheres of curcumin were formulated by solvent evaporation technique using ethanol and dichloromethane (1:1) as organic solvent and incorporating various synthetic polymers as coating polymer, sustain release polymers and floating agent. The final formulation were evaluated various parameters such as compatibility studies, micrometric properties, In-vitro drug release and % buoyancy. FTIR studies showed that there were no interaction between drug and excipients. The surface morphology studies by SEM confirmed their spherical and smooth surface. The mean particles size were found to be 416-618µm, practical yield of microspheres was in the range of 60.21±0.052% - 80.87±0.043%, drug entrapment efficiency 47.4±0.065% - 77.9±0.036% and % buoyancy 62,24±0.161% - 88.63±0.413%. Result show that entraptmency increased as polymer (Eudragit RS100) conc. Increased. The drug release after 12 hrs. was 72.13% - 87.13% and it decrease as a polymer (HPMC, EC) concentration was decrease.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lalit Singh ◽  
Vijay Sharma

Aim: Aim of the present work is implementation of Quality by Design principles for the evolution of optimized sustained release drug delivery system Background: Quality by Design (QbD) approach refers to an advance approach to develop a optimized dosage form.QbD has become a vital modern scientific approach to develop a quality dosage form.In modern era of science researcher can develop a optimized dosage form with least effort, money and manpower. Objectives: Objective of research work wasthe successful development of optimized floating bioadhesive tablets of glipizide using floating-bioadhesive potential of cellulosic polymer and carbomersusing quality by design (QbD) approach. Method: Quality Target Product Profile (QTPP) of drug delivery system was defined as well as critical quality attributes (CQAs) were identified. A face centered central composite design (CCD) was utilized in assessing the impact of individual critical material attribute (CMA) like Hydro Propyl Methyl Cellulose K4M(HPMC K4M)and Carbopol 934P (CP 934P) and their interactions, using least experimentation. Formulations were developed and quantitative impact on CQAs was determined using mathematical model. The optimized formulation was obtained and characterized for in-vitro as well as in-vivo parameters. Results: A Fishikawa diagram and Failure Mode and Effect Analysis (FMEA) were performed to identify potential failure modes associated with the dosage form. The optimum formulation was embarked upon using mathematical model developed yielding desired CQAs followed for confirmation of data. Sustained release drug delivery system was successfully developed by using QbD approach. In-vivo X-ray imaging in rabbit and γ-scintigraphic study in manconfirmed the buoyant nature of the mucoadhesive floating tablet for 8 h in the upper gastrointestinal tract. Conclusion: Optimized formulation shows phenomenal floating, bioadhesive properties and drug release retardation characteristics, utilizing a mixture of cost-effective polymers Hence, QbD approach may be regarded as an important tool in development of floating bioadhesive CR dosage forms.


Sign in / Sign up

Export Citation Format

Share Document