Rapid hemostasis and excellent antibacterial cerium-containing mesoporous bioactive glass/chitosan composite sponge for hemostatic material

2022 ◽  
Vol 23 ◽  
pp. 100735
Author(s):  
Jiaxi Liu ◽  
Xiang Zhou ◽  
Yin Zhang ◽  
Wei Zhu ◽  
Anping Wang ◽  
...  
2017 ◽  
Vol 9 (37) ◽  
pp. 31381-31392 ◽  
Author(s):  
Sara Pourshahrestani ◽  
Ehsan Zeimaran ◽  
Nahrizul Adib Kadri ◽  
Nicola Gargiulo ◽  
Hassan Mahmood Jindal ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3550
Author(s):  
Aerin Choi ◽  
Kyung-Hyeon Yoo ◽  
Seog-Young Yoon ◽  
Bong-Soo Park ◽  
In-Ryoung Kim ◽  
...  

Self-adhesive resins (SARs) contain adhesives, which simplify the procedures of resin application, and primers, which provide sufficient bonding ability. In this study, mesoporous bioactive glass nanoparticles (MBN) were added to a SAR to easily improve the physical properties and remineralization ability. The experimental resins comprised 1%, 3%, and 5% MBN mixed in Ortho Connect Flow (GC Corp, Tokyo, Japan). As the MBN content in the SAR increased, the microhardness increased, and a statistically significant difference was observed between the cases of 1% and 5% MBN addition. Shear bond strength increased for 1% and 3% MBN samples and decreased for 5% MBN. The addition of MBN indicated a statistically significant antibacterial effect on both gram-negative and gram-positive bacteria. The anti-demineralization experiment showed that the remineralization length increased with the MBN content of the sample. Through the above results, we found that SAR containing MBN has antibacterial and remineralization effects. Thus, by adding MBN to the SAR, we investigated the possibility of orthodontic resin development, wherein the strength is enhanced and the drawbacks of the conventional SAR addressed.


Author(s):  
Jiangfeng Li ◽  
Junying Li ◽  
Yuhao Wei ◽  
Na Xu ◽  
Jingtao Li ◽  
...  

Vanadium is an important trace element in bone to involve in bone metabolism, bone formation, and bone growth, but roles of various vanadium ions, especially pentavalent vanadium, in bone tissue...


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Shaher Bano ◽  
Memoona Akhtar ◽  
Muhammad Yasir ◽  
Muhammad Salman Maqbool ◽  
Akbar Niaz ◽  
...  

Biomedical implants are the need of this era due to the increase in number of accidents and follow-up surgeries. Different types of bone diseases such as osteoarthritis, osteomalacia, bone cancer, etc., are increasing globally. Mesoporous bioactive glass nanoparticles (MBGNs) are used in biomedical devices due to their osteointegration and bioactive properties. In this study, silver (Ag)- and strontium (Sr)-doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were prepared by a modified Stöber process. In this method, Ag+ and Sr2+ were co-substituted in pure MBGNs to harvest the antibacterial properties of Ag ions, as well as pro-osteogenic potential of Sr2 ions. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and in-vitro bioactivity was studied. Scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) confirmed the doping of Sr and Ag in MBGNs. SEM and EDX analysis confirmed the spherical morphology and typical composition of MBGNs, respectively. The Ag-Sr MBGNs showed a strong antibacterial effect against Staphylococcus carnosus and Escherichia coli bacteria determined via turbidity and disc diffusion method. Moreover, the synthesized Ag-Sr MBGNs develop apatite-like crystals upon immersion in simulated body fluid (SBF), which suggested that the addition of Sr improved in vitro bioactivity. The Ag-Sr MBGNs synthesized in this study can be used for the preparation of scaffolds or as a filler material in the composite coatings for bone tissue engineering.


2016 ◽  
Vol 7 (2) ◽  
pp. 216-228 ◽  
Author(s):  
Yali Zhang ◽  
Lei Chen ◽  
Mengchao Shi ◽  
Dong Zhai ◽  
Huiying Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document