Enhance performances of Co-free Li-rich cathode by eutesctic melting salt treatment

Nano Energy ◽  
2021 ◽  
pp. 106760
Author(s):  
He Zhao ◽  
Wenting Li ◽  
Jinxing Li ◽  
Hanying Xu ◽  
Chao Zhang ◽  
...  
Keyword(s):  
2021 ◽  
Vol 13 (5) ◽  
pp. 2477
Author(s):  
Kleopatra-Eleni Nikolaou ◽  
Theocharis Chatzistathis ◽  
Serafeim Theocharis ◽  
Anagnostis Argiriou ◽  
Stefanos Koundouras ◽  
...  

Under the current and future climate crisis, a significant rise in soil salinity will likely affect vine productivity in several Mediterranean regions. During the present research, the rootstock effects on salinity tolerance of Merlot and Cabernet Franc grapevine cultivars were studied. In a pot hydroponic culture, own-rooted Merlot and Cabernet Franc grapevine cultivars or grafted onto the rootstocks 1103 P and 101-14 Mgt were drip-irrigated with saline water. A completely randomized 3 × 2 × 2 factorial experiment was designed with two vine rootstocks or own-rooted vines, two scion cultivars, and 100 mM NaCl salinity or control treatments, with six replications. A significant effect of scion cultivar, rootstock, and salinity was observed for most of the measured parameters. At the end of salinity stress period, leaf, shoot, root, and trunk nutrient concentrations were measured. Salinity stress increased Chloride (Cl−) and Sodium (Na+) concentrations in all parts of the vines and decreased leaf concentrations of Potassium (K+), Calcium (Ca+2), Magnesium (Mg+2), Nitrogen (N), and Iron (Fe). In contrast, salinity stress increased leaf Boron (B) concentrations, whereas that of Manganese (Mn) remained unaffected. Leaf chlorophyll concentration decreased from 42% to 40% after thirty and sixty days of salt treatment, respectively. A similar trend was observed for the CCM-200 relative chlorophyll content. Salinity significantly decreased steam water potential (Ws), net CO2 assimilation rate (A), and stomatal conductance(gs) in all cases of grafted or own-rooted vines. Sixty days after the beginning of salt treatment, total Phenolics and PSII maximum quantum yield (Fv/Fm) decreased significantly. The rootstock 1103 P seems to be a better excluder for Na+ and Cl− and more tolerant to salinity compared to 101-14 Mgt rootstock.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Qi Qu ◽  
Bingguang Dai ◽  
Bo Yang ◽  
Xuelian Li ◽  
Yimin Liu ◽  
...  

In the present study, we aimed to investigate the preventive effects of 4-hydroxychalcone (4HCH) on resistant hypertension. We used cryptochrome-null mice, which characteristically show high plasma aldosterone levels, inflammation, and renal injury. The cryptochrome-null mice received high-salt treatment and were treated orally with 4HCH 10 mg/kg, 4HCH 20 mg/kg, and 4HCH 40 mg/kg, respectively. The salt administration in cryptochrome-null mice is able to induce an increase in systolic pressure which is associated with hyperaldosteronism, inflammation, and kidney injury. Treatment with 40 mg/kg 4HCH reduced systolic hypertension, serum IL-1β, and TNF-αlevels and suppressed the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and renal injury. The impact of 4HCH on the hyperaldosteronism, inflammation, and kidney injury provides new insights for future development of therapeutic strategies in resistant hypertension.


2011 ◽  
Vol 29 (3) ◽  
pp. 275-281 ◽  
Author(s):  
José S Rubio ◽  
Walter E Pereira ◽  
Francisco Garcia-Sanchez ◽  
Luis Murillo ◽  
Antonio L García ◽  
...  

The objective of the present study was to evaluate the marketable fruit yield of sweet pepper plants (Capsicum annuum cv. Orlando) in function of the management of nutrient solution with training system. Plants were grown on coconut coir dust under greenhouse conditions in the southeast of Spain. A randomized block design in split-split plot with four blocks was used to test the effect of the nutrient solution strength (full or half-strength Hoagland nutrient solution), training system (two and three stems per plant) and water salinity (saline and non-saline) on total and marketable yield, fruit quality, and fruit mineral concentration. Salt treatment decreased fruit yield by decreasing the fruit fresh weight but not the number of fruits per plant. Under saline and non-saline conditions, the higher yield of fruits was obtained in plants watered with half-strength Hoagland solution, and grown with three stems per plant. Blossom end rot incidence increased under saline conditions or using full-strength Hoagland solution, but decreased with the combination of half-strength Hoagland solution and three-stem training system. Salt treatment also decreased fruit quality in all the treatments due to a decrease in PO2-, SO4(2-), Fe2+;3+, Cu1+;2+ and Mn2+ concentrations, and fruit shape index. Likewise, plants exposed to salinity and watered with half-strength Hoagland solution and trained with three stems showed a reduction in juice glucose and fructose concentration. Based on these results, an increase of the marketable fruit yield could be obtained under non or moderate saline conditions with the implementation of suitable culture practices.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Srinivas Sriramula ◽  
Huijing Xia ◽  
Eric Lazartigues

Elevated reactive oxygen species (ROS) in the central nervous system (CNS) through NADPH oxidase and diminished Nitric oxide (NO) levels are involved in the pathogenesis of hypertension. We previously reported that central Angiotensin Converting Enzyme 2 (ACE2) overexpression prevents the development of hypertension induced by DOCA-salt in a transgenic mouse model (syn-hACE2; SA) with human ACE2 targeted selectively to neurons in the CNS. While baseline blood pressure (BP; telemetry) was not different among genotypes, DOCA-salt treatment (1mg/g body wt DOCA, 1% saline in drinking water for 3 weeks) resulted in significantly lower BP level in SA mice (122 ±3 mmHg, n=12) compared to non-transgenic (NT) littermates (138 ±3 mmHg, n=8). To elucidate the mechanisms involved in this response, we investigated the paraventricular nucleus (PVN) expression of Nox-2 (catalytic subunit of NADPH oxidase), 3-nitrotyrosine, and endothelial nitric oxide synthase (eNOS) and anti-oxidant enzymes superoxide dismutase (SOD) and catalase in the hypothalamus. DOCA-salt treatment resulted in decreased catalase (95.2 ±5.6 vs. 113.8 ±17.6 mmol/min/ml, p<0.05) and SOD (4.1 ±0.4 vs. 5.9 ±0.2 U/ml, p<0.01) activities in hypothalamic homogenates of NT mice, which was prevented by ACE2 overexpression (141.8 ±9.9 vs. 142.1 ±9.2 mmol/min/ml and 5.9 ±0.3 vs. 7.9 ±0.2 U/ml, respectively). NT mice treated with DOCA-salt showed increased oxidative stress as indicated by increased expression of Nox-2 (61 ±5 % increase, n=9, p<0.001 vs. NT) and 3-nitrotyrosine (89 ±32 % increase, n=9, p<0.01 vs. NT) in the PVN which was attenuated in SA mice. Furthermore, DOCA-salt hypertension resulted in decreased phosphorylation of eNOS-ser1177 in the PVN (33 ±5 % decrease, n=9, p<0.05 vs NT) and this decrease was prevented by ACE2 overexpression. Taken together, these data provide evidence that brain ACE2 regulates the balance between NO and ROS levels, thereby preventing the development of DOCA-salt hypertension.


1993 ◽  
Vol 265 (1) ◽  
pp. H15-H21 ◽  
Author(s):  
C. S. Bockman ◽  
W. B. Jeffries ◽  
W. A. Pettinger ◽  
P. W. Abel

Mesenteric artery rings from Wistar and Wistar-Furth rats subcutaneously treated with deoxycorticosterone acetate (DOCA) and 1% NaCl drinking water were used to measure endothelial modulation of contractile sensitivity and vasopressin receptor function and affinity. DOCA-salt hypertension reduced contractile sensitivity to arginine vasopressin (AVP) and did not affect contractile sensitivity to norepinephrine in arteries from Wistar rats. Endothelial removal caused a threefold increase in contractile sensitivity to AVP and norepinephrine in DOCA-salt hypertensive Wistar rats. In Wistar-Furth rats, DOCA-salt treatment did not affect contractile sensitivity to AVP, lysine vasopressin, oxytocin, and norepinephrine or the affinity of the vasopressin receptor for agonists or antagonists. Removal of endothelium did not affect vasopressin contractile sensitivity but caused a 15-fold increase in contractile sensitivity to norepinephrine in untreated or DOCA-salt-treated Wistar-Furth rats. These data show that reduced vasopressin receptor function and increased endothelial function that compensate for increased contractile sensitivity in arteries from DOCA-salt hypertensive Wistar rats are not the cause of resistance of DOCA-salt-treated Wistar-Furth rats to the development of enhanced contractile sensitivity and hypertension.


Sign in / Sign up

Export Citation Format

Share Document