Motor planning and sparse motor command representation

2007 ◽  
Vol 70 (10-12) ◽  
pp. 1748-1752 ◽  
Author(s):  
Yutaka Sakaguchi ◽  
Shiro Ikeda
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel H. Blustein ◽  
Ahmed W. Shehata ◽  
Erin S. Kuylenstierna ◽  
Kevin B. Englehart ◽  
Jonathon W. Sensinger

AbstractWhen a person makes a movement, a motor error is typically observed that then drives motor planning corrections on subsequent movements. This error correction, quantified as a trial-by-trial adaptation rate, provides insight into how the nervous system is operating, particularly regarding how much confidence a person places in different sources of information such as sensory feedback or motor command reproducibility. Traditional analysis has required carefully controlled laboratory conditions such as the application of perturbations or error clamping, limiting the usefulness of motor analysis in clinical and everyday environments. Here we focus on error adaptation during unperturbed and naturalistic movements. With increasing motor noise, we show that the conventional estimation of trial-by-trial adaptation increases, a counterintuitive finding that is the consequence of systematic bias in the estimate due to noise masking the learner’s intention. We present an analytic solution relying on stochastic signal processing to reduce this effect of noise, producing an estimate of motor adaptation with reduced bias. The result is an improved estimate of trial-by-trial adaptation in a human learner compared to conventional methods. We demonstrate the effectiveness of the new method in analyzing simulated and empirical movement data under different noise conditions.


2020 ◽  
Author(s):  
Daniel H. Blustein ◽  
Ahmed W. Shehata ◽  
Erin S. Kuylenstierna ◽  
Kevin B. Englehart ◽  
Jonathon W. Sensinger

AbstractDuring goal-directed movements, the magnitude of error correction by a person on a subsequent movement provides important insight into a person’s motor learning dynamics. Observed differences in trial-by-trial adaptation rates might indicate different relative weighting placed on the various sources of information that inform a movement, e.g. sensory feedback, control predictions, or internal model expectations. Measuring this trial-by-trial adaptation rate is not straightforward, however, since externally observed data are masked by noise from several sources and influenced by inaccessible internal processes. Adaptation to perturbation has been used to measure error adaptation as the introduced external disturbance is sufficiently large to overshadow other noise sources. However, perturbation analysis is difficult to implement in real-world scenarios, requires a large number of movement trials to accommodate infrequent perturbations, and the paradigm itself might affect the movement dynamics being observed. Here we focus on error adaptation during unperturbed and naturalistic movements. With increasing motor noise, the conventional estimation of trial-by-trial adaptation increases, a counterintuitive finding that is the consequence of systematic bias in the estimate due to noise masking the learner’s intention. We present an analytic solution relying on stochastic signal processing to reduce this effect of noise, producing an estimate of motor adaptation with reduced bias. The result is an improved estimate of trial-by-trial adaptation in a human learner compared to conventional methods. We demonstrate the effectiveness of the new method in analyzing simulated and empirical movement data under different noise conditions. The analytic approach is applicable across different types of movements in varied contexts and should replace the regression analysis method in future motor analysis studies.Author SummaryWhen a person makes a movement, a motor error is typically observed that then drives motor planning corrections on subsequent movements. This error correction provides insight into how the nervous system is operating, particularly in regard to how much confidence a person places in different sources of information such as sensory feedback or motor command reproducibility. Traditional analysis of movement has required carefully controlled laboratory conditions, limiting the usefulness of motor analysis in clinical and everyday environments. Here we present a new computational method that can be accurately applied to typical movements. Counterintuitive findings of the established approach are corrected by the proposed method. This method will provide a common framework for researchers to analyze movements while extending dynamic motor adaptation analysis capabilities to clinical and non-laboratory settings.


2021 ◽  
Author(s):  
Daniele Romano ◽  
Alessandro Mioli ◽  
Marco D’Alonzo ◽  
Angelo Maravita ◽  
Vincenzo Di Lazzaro ◽  
...  

Abstract Motor planning and execution require a representational map of our body. Since the body can assume different postures, it is not known how it is represented in this map. Moreover, is the generation of the motor command favored by some body configurations? We investigated the existence of a centrally favored posture of the hand for action, in search of physiological and behavioral advantages due to central motor processing. We tested two opposite hand pinch grips, equally difficult and commonly used: forearm pronated, thumb-down, index-up pinch against the same grip performed with thumb-up. The former revealed faster movement onset, sign of faster neural computation, and faster target reaching. It induced increased corticospinal excitability, independently on pre-stimulus tonic muscle contraction. Remarkably, motor excitability also increased when thumb-down pinch was only observed, imagined, or prepared, actually keeping the hand at rest. Motor advantages were independent of any concurrent modulation due to somatosensory input, as shown by testing afferent inhibition. Results provide strong behavioral and physiological evidence for a preferred hand posture favoring brain motor control, independently by somatosensory processing. This suggests the existence of a baseline postural representation that may serve as an a priori spatial reference for body–space interaction.


2020 ◽  
Vol 29 (4) ◽  
pp. 2109-2130
Author(s):  
Lauren Bislick

Purpose This study continued Phase I investigation of a modified Phonomotor Treatment (PMT) Program on motor planning in two individuals with apraxia of speech (AOS) and aphasia and, with support from prior work, refined Phase I methodology for treatment intensity and duration, a measure of communicative participation, and the use of effect size benchmarks specific to AOS. Method A single-case experimental design with multiple baselines across behaviors and participants was used to examine acquisition, generalization, and maintenance of treatment effects 8–10 weeks posttreatment. Treatment was distributed 3 days a week, and duration of treatment was specific to each participant (criterion based). Experimental stimuli consisted of target sounds or clusters embedded nonwords and real words, specific to each participants' deficit. Results Findings show improved repetition accuracy for targets in trained nonwords, generalization to targets in untrained nonwords and real words, and maintenance of treatment effects at 10 weeks posttreatment for one participant and more variable outcomes for the other participant. Conclusions Results indicate that a modified version of PMT can promote generalization and maintenance of treatment gains for trained speech targets via a multimodal approach emphasizing repeated exposure and practice. While these results are promising, the frequent co-occurrence of AOS and aphasia warrants a treatment that addresses both motor planning and linguistic deficits. Thus, the application of traditional PMT with participant-specific modifications for AOS embedded into the treatment program may be a more effective approach. Future work will continue to examine and maximize improvements in motor planning, while also treating anomia in aphasia.


2015 ◽  
Vol 74 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Alexandre Coutté ◽  
Gérard Olivier ◽  
Sylvane Faure

Computer use generally requires manual interaction with human-computer interfaces. In this experiment, we studied the influence of manual response preparation on co-occurring shifts of attention to information on a computer screen. The participants were to carry out a visual search task on a computer screen while simultaneously preparing to reach for either a proximal or distal switch on a horizontal device, with either their right or left hand. The response properties were not predictive of the target’s spatial position. The results mainly showed that the preparation of a manual response influenced visual search: (1) The visual target whose location was congruent with the goal of the prepared response was found faster; (2) the visual target whose location was congruent with the laterality of the response hand was found faster; (3) these effects have a cumulative influence on visual search performance; (4) the magnitude of the influence of the response goal on visual search is marginally negatively correlated with the rapidity of response execution. These results are discussed in the general framework of structural coupling between perception and motor planning.


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


2020 ◽  
Author(s):  
Valentina Truppa ◽  
Gloria Sabbatini ◽  
Patricia Izar ◽  
Dorothy M. Fragaszy ◽  
Elisabetta Visalberghi

Sign in / Sign up

Export Citation Format

Share Document