scholarly journals Gray matter volume changes in chronic subcortical stroke: A cross-sectional study

2017 ◽  
Vol 14 ◽  
pp. 679-684 ◽  
Author(s):  
Qingqing Diao ◽  
Jingchun Liu ◽  
Caihong Wang ◽  
Chen Cao ◽  
Jun Guo ◽  
...  
2021 ◽  
pp. 1-10
Author(s):  
Hidemasa Takao ◽  
Shiori Amemiya ◽  
Osamu Abe ◽  

Background: Scan acceleration techniques, such as parallel imaging, can reduce scan times, but reliability is essential to implement these techniques in neuroimaging. Objective: To evaluate the reproducibility of the longitudinal changes in brain morphology determined by longitudinal voxel-based morphometry (VBM) between non-accelerated and accelerated magnetic resonance images (MRI) in normal aging, mild cognitive impairment (MCI), and Alzheimer’s disease (AD). Methods: Using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 2 database, comprising subjects who underwent non-accelerated and accelerated structural T1-weighted MRI at screening and at a 2-year follow-up on 3.0 T Philips scanners, we examined the reproducibility of longitudinal gray matter volume changes determined by longitudinal VBM processing between non-accelerated and accelerated imaging in 50 healthy elderly subjects, 54 MCI patients, and eight AD patients. Results: The intraclass correlation coefficient (ICC) maps differed among the three groups. The mean ICC was 0.72 overall (healthy elderly, 0.63; MCI, 0.75; AD, 0.63), and the ICC was good to excellent (0.6–1.0) for 81.4%of voxels (healthy elderly, 64.8%; MCI, 85.0%; AD, 65.0%). The differences in image quality (head motion) were not significant (Kruskal–Wallis test, p = 0.18) and the within-subject standard deviations of longitudinal gray matter volume changes were similar among the groups. Conclusion: The results indicate that the reproducibility of longitudinal gray matter volume changes determined by VBM between non-accelerated and accelerated MRI is good to excellent for many regions but may vary between diseases and regions.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012869
Author(s):  
Raffaello Bonacchi ◽  
Alessandro Meani ◽  
Elisabetta Pagani ◽  
Olga Marchesi ◽  
Andrea Falini ◽  
...  

Objective:To investigate whether age at onset influences brain gray matter volume (GMV) and white matter (WM) microstructural abnormalities in adult multiple sclerosis (MS) patients, given its influence on clinical phenotype and disease course.Method:In this hypothesis-driven cross-sectional study, we enrolled 67 pediatric-onset MS (POMS) patients and 143 sex- and disease duration (DD)-matched randomly-selected adult-onset MS (AOMS) patients, together with 208 healthy controls. All subjects underwent neurological evaluation and 3T MRI acquisition. MRI variables were standardized based on healthy controls, to remove effects of age and sex. Associations with DD in POMS and AOMS patients were studied with linear models. Time to reach clinical and MRI milestones was assessed with product-limit approach.Results:At DD=1 year, GMV and WM fractional anisotropy (FA) were abnormal in AOMS but not in POMS patients. Significant interaction of age at onset (POMS vs AOMS) into the association with DD was found for GMV and WM FA. The crossing point of regression lines in POMS and AOMS patients was at 20 years of DD for GMV and 14 for WM FA. For POMS and AOMS patients, median DD was 29 and 19 years to reach Expanded Disability Status Scale=3 (p<0.001), 31 and 26 years to reach abnormal Paced Auditory Serial Addition Task-3 (p=0.01), 24 and 18 years to reach abnormal GMV (p=0.04), and 19 and 17 years to reach abnormal WM FA (p=0.36).Conclusions:Younger patients are initially resilient to MS-related damage. Then, compensatory mechanisms start failing with loss of WM integrity, followed by GM atrophy and finally disability.


2020 ◽  
pp. 070674372092782 ◽  
Author(s):  
Kamyar Keramatian ◽  
Wayne Su ◽  
Gayatri Saraf ◽  
Trisha Chakrabarty ◽  
Lakshmi N. Yatham

Objective: It has been proposed that different stages of the bipolar disorder might have distinct neurobiological changes. However, the evidence for this has not been consistent, as the studies in early stages of the illness are limited by small sample sizes. The purpose of this study was to investigate the gray matter volume changes in bipolar patients who recently recovered from their first episode of mania (FEM). Methods: Using a whole-brain voxel-based analysis, we compared the regional gray matter volumes of 61 bipolar patients who have recovered from their FEM in the past 3 months with 43 age- and gender-matched healthy participants. We also performed a series of subgroup analyses to determine the effects of hospitalization during the FEM, history of depressive episodes, and exposure to lithium. Results: No statistically significant difference was found between gray matter volumes of FEM patients and healthy participants, even at a more liberal threshold ( P < 0.001, uncorrected for multiple comparisons). Voxel-based subgroup analyses did not reveal significant gray matter differences except for a trend toward decreased gray matter volume in left lateral occipital cortex ( P < 0.001, uncorrected) in patients with a previous history of depression. Conclusion: This study represents the largest structural neuroimaging investigation of FEM published to date. Early stage of bipolar disorder was not found to be associated with significant gray matter volume changes. Our findings suggest that there might be a window of opportunity for early intervention strategies to prevent or delay neuroprogression in bipolar disorder.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S414-S414
Author(s):  
Sara L Godina ◽  
Caterina Rosano ◽  
Peter J Gianaros ◽  
Howard J Aizenstein ◽  
Michelle C Carlson ◽  
...  

Abstract Lower neighborhood socioeconomic status (nSES) is associated with poorer cognitive function; underlying neural correlates are unknown. Cross-sectional associations of nSES (six census-derived measures of income, education, and occupation) and gray matter volume (GMV) of eight memory-related regions (hippocampus, middle frontal gyrus, amygdala, insula, parahippocampal gyrus, anterior, middle, and posterior cingulum) were examined in 264 community-dwelling older adults (mean age=83, 56.82% female, 39.02% black). In linear mixed effects models adjusted for total brain atrophy and accounting for geographic clustering, higher nSES was associated with greater GMV of the left hippocampus, left posterior cingulum, and bilateral insula, middle frontal, and parahippocampal gyri. nSES remained associated with GMV of the right insula (β= -32.26, p=0.026, 95%CI: -60.66, -3.86) after adjusting for individual level age, gender, race, income, and education. The nSES and cognitive function association may not be due to gray matter volume differences; other behavioral and biological mediators should be explored.


Sign in / Sign up

Export Citation Format

Share Document