Influence of high energy ion irradiation on fullerene derivative (PCBM) thin films

Author(s):  
Trupti Sharma ◽  
Rahul Singhal ◽  
Ritu Vishnoi ◽  
G.B.V.S. Lakshmi ◽  
S.K. Biswas
Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2000
Author(s):  
Marcelo Roldán ◽  
Fernando José Sánchez ◽  
Pilar Fernández ◽  
Christophe J. Ortiz ◽  
Adrián Gómez-Herrero ◽  
...  

In the present investigation, high-energy self-ion irradiation experiments (20 MeV Fe+4) were performed on two types of pure Fe samples to evaluate the formation of dislocation loops as a function of material volume. The choice of model material, namely EFDA pure Fe, was made to emulate experiments simulated with computational models that study defect evolution. The experimental conditions were an ion fluence of 4.25 and 8.5 × 1015 ions/cm2 and an irradiation temperature of 350 and 450 °C, respectively. First, the ions pass through the samples, which are thin films of less than 100 nm. With this procedure, the formation of the accumulated damage zone, which is the peak where the ions stop, and the injection of interstitials are prevented. As a result, the effect of two free surfaces on defect formation can be studied. In the second type of experiments, the same irradiations were performed on bulk samples to compare the creation of defects in the first 100 nm depth with the microstructure found in the whole thickness of the thin films. Apparent differences were found between the thin foil irradiation and the first 100 nm in bulk specimens in terms of dislocation loops, even with a similar primary knock-on atom (PKA) spectrum. In thin films, the most loops identified in all four experimental conditions were b ±a0<100>{200} type with sizes of hundreds of nm depending on the experimental conditions, similarly to bulk samples where practically no defects were detected. These important results would help validate computational simulations about the evolution of defects in alpha iron thin films irradiated with energetic ions at large doses, which would predict the dislocation nucleation and growth.


2013 ◽  
Vol 24 ◽  
pp. 133-139 ◽  
Author(s):  
Madhavi Thakurdesai ◽  
A. Mahadkar ◽  
Varsha Bhattacharyya

Ion beam irradiation is a unique non-equilibrium technique for phase formation and material modification. Localized rise in temperature and ultra fast (~1012 s) dissipations of impinging energy make it an attractive tool for nanostructure synthesize. Dense electronic excitation induced spatial and temporal confinement of high energy in a narrow dimension leads the system to a highly non-equilibrium state and the system then relaxes dynamically inducing nucleation of nanocrystals along the latent track. In the present investigation, amorphous thin films of TiO2 are irradiated by 100 MeV Ag ion beam. These irradiated thin films are characterized by Atomic Force Microscopy (AFM), Glancing Angle X-ray Diffraction (GAXRD), Transmission Electron Microscopy (TEM) and UV-VIS absorption spectroscopy. AFM and TEM studies indicate formation of circular nanoparticles of size 10±2 nm in a film irradiated at a fluence of 1×1012 ions.cm-2. Nanophase formation is also inferred from the blueshift observed in UV-VIS absorption band edge.


1995 ◽  
Vol 258 (1-2) ◽  
pp. 123-127 ◽  
Author(s):  
H.C. Barshilia ◽  
Somna Sah ◽  
B.R. Mehta ◽  
V.D. Vankar ◽  
D.K. Avasthi ◽  
...  

2002 ◽  
Vol 92 (6) ◽  
pp. 3304-3310 ◽  
Author(s):  
B. Balamurugan ◽  
B. R. Mehta ◽  
D. K. Avasthi ◽  
Fouran Singh ◽  
Akhilesh K. Arora ◽  
...  

2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
Sanju Rani ◽  
Somnath C. Roy ◽  
N. K. Puri ◽  
M. C. Bhatnagar ◽  
D. Kanjilal

Swift heavy ion irradiation is an effective technique to induce changes in the microstructure and electronic energy levels of materials leading to significant modification of properties. Here we report enhancement of ammonia (NH3) sensitivity ofSnO2thin films subjected to high-energyNi+ion irradiation. Sol-gel-derivedSnO2thin films (100 nm thickness) were exposed to 75 MeVNi+ion irradiation, and the gas response characteristics of irradiated films were studied as a function of ion fluence. The irradiated films showedp-type conductivity with a much higher response toNH3compared to other gases such as ethanol. The observed enhancement ofNH3sensitivity is discussed in context of ion beam generated electronic states in theSnO2thin films.


2007 ◽  
Vol 539-543 ◽  
pp. 3297-3302
Author(s):  
Yoshihisa Watanabe ◽  
Masami Aono ◽  
Nobuaki Kitazawa

Both bulk and thin film amorphous carbon were irradiated using a nitrogen ion beam and changes in surface roughness and composition after ion beam irradiation have been studied. Amorphous carbon thin films were prepared from toluene vapor using plasma enhanced chemical vapor deposition. Ion irradiation was performed at room temperature using a nitrogen ion beam and the ion beam energy was varied from 0.2 to 1.5 keV under the constant ion current density. Surface morphology was observed with atomic force microscopy (AFM). Depth profiles of nitrogen in the irradiated specimens were analyzed by X-ray photoelectron spectroscopy (XPS). AFM observations reveal that after the ion beam irradiation the surface of the bulk amorphous carbon becomes rough, while the surface of the amorphous carbon films becomes smooth. However, the notable difference in the surface roughness is hardly observed between low- and high-energy ion irradiation. From XPS studies, it is found that the nitrogen concentration near the surface increases after the ion irradiation for both bulk and thin films and irradiated nitrogen ions are combined with carbon, resulting in formation of carbon nitride layers. Depth profiles of nitrogen show that for the bulk specimen low-energy ion irradiation is more effective for the carbon nitride formation than high-energy ion irradiation, while for the thin films high-energy ions are implanted more deeply than low-energy ions.


2003 ◽  
Vol 434 (1-2) ◽  
pp. 40-48 ◽  
Author(s):  
Basavaraj Angadi ◽  
P. Victor ◽  
V.M. Jali ◽  
M.T. Lagare ◽  
Ravi Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document