Exogenous nitric oxide stimulated collagen type I expression and TGF-β1 production in keloid fibroblasts by a cGMP-dependent manner

Nitric Oxide ◽  
2007 ◽  
Vol 16 (2) ◽  
pp. 258-265 ◽  
Author(s):  
Yi-Chiang Hsu ◽  
Michael Hsiao ◽  
Yie W. Chien ◽  
Woan-Ruoh Lee
Author(s):  
Guoguang Yang ◽  
Richard C. Crawford ◽  
James H.-C. Wang

This study investigated the effect of cyclic mechanical stretching on the collagen gene expression and protein synthesis of human patellar tendon fibroblasts (HPTFs). We hypothesized that cyclic mechanical stretching of HPTFs would increase collagen synthesis via transforming growth factor-beta 1 (TGF-β1). To test the hypothesis, the tendon fibroblasts were cultured on microgrooved surfaces of silicone dishes under serum-free conditions. The cells were subjected to cyclic uniaxial stretching with a constant frequency and duration (0.5Hz, 4hr), and one of three stretching magnitudes (no stretch, 4%, and 8%) followed by 4 hours of rest. It was found that the gene and protein expression of both collagen type I and TGF-β1 were significantly increased in a stretching-magnitude dependent manner, whereas collagen type III gene and protein levels were not significantly changed. The exogenous addition of antibody to TGF-β1 eliminated the stretching-induced increase in collagen type I protein synthesis. The results therefore confirmed our working hypothesis and suggest that mechanical stretching of tendon fibroblasts can lead to matrix remodeling by modulating the collagen production of tendon fibroblasts, a process at least particially mediated by TGF-β1.


1999 ◽  
Vol 10 (9) ◽  
pp. 1891-1899 ◽  
Author(s):  
DONG CHEOL HAN ◽  
MOTOHIDE ISONO ◽  
BRENDA B. HOFFMAN ◽  
FUAD N. ZIYADEH

Abstract. Renal tubular epithelial cells and interstitial fibroblasts are active participants in tubulointerstitial fibrosis, the best correlate of decreased glomerular filtration in diabetic nephropathy. It was reported previously that high ambient glucose stimulates transforming growth factor-β (TGF-β) mRNA and bioactivity, promotes cellular hypertrophy, and increases collagen synthesis in proximal tubular cells. This study evaluates the effects of high glucose and TGF-β on the behavior of murine renal cortical fibroblasts (TFB) in culture. High glucose (450 mg/dl) significantly increased [3H]-thymidine incorporation (by 60 to 80% after 24 to 72 h) and cell number, without significantly increasing cell death when compared with normal glucose (100 mg/dl). There also was a transient increase in the mRNA of the c-mycandegr-1early-response genes. Exogenous TGF-β1 was promitogenic rather than antiproliferative in contrast to other renal cell types. Northern blot analysis demonstrated constitutive expression of TGF-β1, -β2, and -β3 transcripts. Exposure to high glucose increased all three TGF-β isoforms in a time-dependent manner. High glucose as well as exogenous TGF-β1 also increased [3H]-proline incorporation, α2(I) collagen mRNA, and type I collagen protein (measured by immunoassay). Treatment with a neutralizing pan-selective monoclonal anti-TGF-β antibody markedly attenuated the stimulation by high ambient glucose of thymidine incorporation, TGF-β1 mRNA, and type I collagen mRNA and protein levels. It is concluded that high ambient glucose and exogenous TGF-β1 share similar actions on renal fibroblasts. Moreover, the stimulation of cell proliferation and collagen type I synthesis in these cells by high ambient glucose are mediated by activation of an autocrine TGF-β system.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.1-1094
Author(s):  
A. S. Siebuhr ◽  
P. Juhl ◽  
M. Karsdal ◽  
A. C. Bay-Jensen

Background:Interleukin 6 (IL-6) is known to have both pro- and anti-inflammatory properties, depending on the receptor activation. The classical IL-6 signaling via the membrane bound receptor is mainly anti-inflammatory, whereas signaling through the soluble receptor (sIL-6R) is pro-inflammatory/pro-fibrotic. However, the direct fibrotic effect of IL-6 stimulation on dermal fibroblasts is unknown.Objectives:We investigated the fibrotic effect of IL-6 + sIL-6R in a dermal fibroblast model and assessed fibrosis by neo-epitope biomarkers of extracellular matrix proteins.Methods:Primary healthy human dermal fibroblasts were grown for up to 17 days in DMEM medium with 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid. IL-6 [1-90 nM]+sIL-6R [0.1-9 nM] alone or in combination with TGFβ [1 nM] were tested in three different donors. TGFβ [1 nM], PDGF-AB [3 nM] and non-stimulated cells (w/o) were used as controls. Tocilizumab (TCZ) with TGFβ + IL-6 + sIL-6R stimulation was tested in one donor. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Western blot analysis investigated signal cascades. Gene expression of selected ECM proteins was analyzed. Statistical analyses included One-way and 2-way ANOVA and area under the curve analysis.Results:formation by the end of the culture period. The fibronectin and collagen type VI signal were consistent between the three tested donors, whereas the formation of type III collagen was only increased in one donor, but in several trials. Type I collagen formation was unchanged by IL-6 + sIL-6R stimulation. The gene expression of type I collagen was induced by IL-6 + sIL-6R. Western blot analysis validated trans-signaling by the IL-6+sIL-6R stimulation as expected.IL-6 + sIL-6R stimulation in combination with TGFβ decreased fibronectin levels compared to TGFβ alone but did not reach the level of unstimulated fibroblasts. The formation of collagen type IV was generally unchanged with IL-6 + sIL-6R + TGFβ compared to TGFβ alone. Collagen type I and III formation was more scattered in the signals when IL-6 + sIL-6R was in combination with TGFβ, as the biomarker level could be either decreased or increased compared to TGFβ alone. In two studies the type I collagen level was synergistic increased by IL-6 + sIL-6R + TGFβ, whereas another study found the level to be decreased compared to TGFβ alone. The gene expression of fibronectin and type I collagen was increased with TGFβ +IL-6+sIL-6R compared to TGFβ alone.Inhibition of IL-6R by TCZ in combination with IL-6 + sIL-6R did only decrease the fibronectin level with the lowest TCZ concentration (p=0.03). TCZ alone decreased the fibronectin level in a dose-dependent manner (One-way ANOVA p=0.0002).Conclusion:We investigated the fibrotic response of dermal fibroblasts to IL-6 + sIL-6R stimulation. IL-6 modulated the fibronectin level and modulated the collagen type III formation level in a somewhat dose-dependent manner. In combination with TGFβ, IL-6 decreased collagen type I and IV formation and fibronectin. However, in this study inhibition of IL-6R by TCZ did not change the fibrotic response of the dermal fibroblasts. This study indicated that IL-6 did not induce collagen formation in dermal fibroblasts, except type III collagen formation with high IL-6 concentration.Figure:Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Pernille Juhl Employee of: Nordic Bioscience, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Mingyi Wang ◽  
Gianfranco Pintus ◽  
Roberta Giordo ◽  
Jing Zhang ◽  
Liqun Jiang ◽  
...  

Collagen deposition, a hallmark of arterial aging that resembles post-injury arterial restenosis, is perpetrated by angiotensin II (Ang II) signaling in arterial wall. Collagen aggregation at sites of arterial injury is regulated by the coordinated signaling of pro-fibrotic TGF-β1 and anti-fibrotic vasorin within VSMCs. The Ang II/TGF-β1/vasorin signaling relationship within VSMCs with aging, however, remains unknown. In vivo studies in old vs. young FXBN rats show that aortic transcription and translation of vasorin markedly decrease with aging. In vitro studies in VSMCs isolated from old vs. young aortae. Ang II-associated reduction of vasorin protein abundance in young VSMCs and age-associated changes in vasorin protein levels are reversed by the AT1 antagonist, Losartan (Los) (Figure). Dual immunolabeling and co-immunoprecipitation demonstrate that the co-incidence and physical interaction of vasorin and TGF-β1 within VSMCs are significantly decreased with aging. Importantly, exposure of young VSMCs to Ang II that increases p-SMAD2/3 and collagen type I production, mimicking old cells, and this effect is abolished or substantially mitigated by Los treatment, overexpression of ectopic vasorin, or exogenous recombinant human-vasorin protein. In contrast, exposure of old VSMCs to Los decreases p-SMAD2/3 and collagen type I production.Thus, an imbalance of the Ang II/TGF-β1/vasorin signaling cascade, a feature of the aged arterial wall, enhances the collagen production by VSMCs. Maintaining this signaling balance is a novel measure to retard adverse extracellular matrix remodeling, a determinant of arterial stiffening with aging. (MW and GP co-first authors)


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Farhan Rizvi ◽  
Ramail Siddiqui ◽  
Alessandra DeFranco ◽  
Alisher Holmuhamedov ◽  
Hao Xu ◽  
...  

Background: Ventricular fibrosis leads to progressive cardiac dysfunction and heart failure (HF). Statins are reported to reduce cardiac fibrosis through the cholesterol-independent pathway, but mechanisms remain elusive. We hypothesize simvastatin reduced TGF-β1-induced ventricular fibrosis through activation of SMAD protein phosphatase Mg 2+ /Mn 2+ -1A (PPM1A), -2A (PP2A). Methods: In the absence and presence of TGF-β1 (5ng) with or without simvastatin (1μM), the rate of fibroblast proliferation (doubling time), myofibroblast differentiation (ICC), α-SMA mRNA (RT-PCR) and protein expression (Western blot) and the release of collagen synthesis markers, pro-collagen type I C-terminal peptide (PICP) and pro-collagen type III N-terminal peptide (PIIINP), in the media (ELISA) were determined along with protein interaction between SMAD2/3 and PPM1A or PP2A (Co-IP) and SMAD2/3 phosphorylation (Western blot). Results: Simvastatin reduced the effect of TGF-β1 on hVF proliferation by 47% (50000 to 26500), p<0.01; myofibroblast differentiated population from 48% (avg 48/100) to 11% (avg 11/100), p<0.01; expression of α-SMA mRNA by 76%, p<0.01; and protein by 60%, p<0.05. Simvastatin also decreased release of PICP by 66%, p<0.01, and PIIINP by 83%, p<0.01, into the media. Time-dependent increases in SMAD2/3 phosphorylation were reduced by simvastatin through activation of protein phosphatases PPM1A and PP2A by interacting with SMAD2/3. Conclusion: Involvement of PPM1A and PP2A in the anti-fibrotic effect of simvastatin reveals novel signaling mediators that may be selectively targeted for prevention of myocardial injury-induced ventricular fibrosis and HF.


2020 ◽  
Vol 117 (21) ◽  
pp. 11387-11398 ◽  
Author(s):  
Bo Ri Seo ◽  
Xingyu Chen ◽  
Lu Ling ◽  
Young Hye Song ◽  
Adrian A. Shimpi ◽  
...  

Altered microarchitecture of collagen type I is a hallmark of wound healing and cancer that is commonly attributed to myofibroblasts. However, it remains unknown which effect collagen microarchitecture has on myofibroblast differentiation. Here, we combined experimental and computational approaches to investigate the hypothesis that the microarchitecture of fibrillar collagen networks mechanically regulates myofibroblast differentiation of adipose stromal cells (ASCs) independent of bulk stiffness. Collagen gels with controlled fiber thickness and pore size were microfabricated by adjusting the gelation temperature while keeping their concentration constant. Rheological characterization and simulation data indicated that networks with thicker fibers and larger pores exhibited increased strain-stiffening relative to networks with thinner fibers and smaller pores. Accordingly, ASCs cultured in scaffolds with thicker fibers were more contractile, expressed myofibroblast markers, and deposited more extended fibronectin fibers. Consistent with elevated myofibroblast differentiation, ASCs in scaffolds with thicker fibers exhibited a more proangiogenic phenotype that promoted endothelial sprouting in a contractility-dependent manner. Our findings suggest that changes of collagen microarchitecture regulate myofibroblast differentiation and fibrosis independent of collagen quantity and bulk stiffness by locally modulating cellular mechanosignaling. These findings have implications for regenerative medicine and anticancer treatments.


2014 ◽  
Vol 134 (3) ◽  
pp. 818-826 ◽  
Author(s):  
Masayo Aoki ◽  
Koichi Miyake ◽  
Rei Ogawa ◽  
Teruyuki Dohi ◽  
Satoshi Akaishi ◽  
...  

2014 ◽  
Vol 34 (5) ◽  
pp. 497-505 ◽  
Author(s):  
F Guo ◽  
YB Sun ◽  
L Su ◽  
S Li ◽  
ZF Liu ◽  
...  

Paraquat (PQ) is one of the most widely used herbicides in the world and can cause pulmonary fibrosis in the cases with intoxication. Losartan, an angiotensin II type 1 receptor antagonist, has beneficial effects on the treatment of fibrosis. The aim of this study was to examine the effect of losartan on pulmonary fibrosis in PQ-intoxicated rats. Adult male Sprague Dawley rats ( n = 32, 180–220 g) were randomly assigned to four groups: (i) control group; (ii) PQ group; (iii) PQ + losartan 7d group; and (iv) PQ + losartan 14d group. Losartan treatment (intragastrically (i.g.), 10 mg/kg) was performed for 7 and 14 days after a single i.g. dose of 40 mg/kg PQ. All rats were killed on the 16th day, and hematoxylin–eosin and Masson’s trichrome staining were used to examine lung injury and fibrosis. The levels of hydroxyproline and transforming growth factor β1 (TGF-β1), matrix metallopeptidase 9 (Mmp9), and tissue inhibitor of metalloproteinase 1 (TIMP-1) messenger RNA (mRNA) expression and relative expression levels of collagen type I and III were also detected. PQ caused a significant increase in hydroxyproline content, mRNA expression of TGF-β1, Mmp9, and TIMP-1, and relative expression levels of collagen type I and III (  p < 0.05), while losartan significantly decreased the amount of hydroxyproline and downregulated TGF-β1, Mmp9, and TIMP-1 mRNA and collagen type I and III expressions (  p < 0.05). Histological examination of PQ-treated rats showed lung injury and widespread inflammatory cell infiltration in the alveolar space and pulmonary fibrosis, while losartan could markedly reduce such damage and prevent pulmonary fibrosis. The results of this study indicated that losartan could reduce lung damage and prevent pulmonary fibrosis induced by PQ.


Parasitology ◽  
2007 ◽  
Vol 134 (11) ◽  
pp. 1611-1621 ◽  
Author(s):  
D. CHU ◽  
Q. LUO ◽  
C. LI ◽  
Y. GAO ◽  
L. YU ◽  
...  

SUMMARYThe main pathological characteristics of hepatic fibrosis in schistosomiasis are the proliferation of hepatic stellate cells (HSCs) and the deposition of collagen type I (Col I) and collagen type III (Col III). Transforming growth factor beta-1 (TGF-β1) plays an important role in hepatic fibrosis. Paeoniflorin (PAE) has been reported to have immunoregulatory effects; however, the mechanism of its anti-hepatic fibrosis inS. japonicumhas not been elucidated. In the present study, we found that mouse peritoneal macrophages (PMφs) stimulated by soluble egg antigen (SEA) ofS. japonicumcould secrete TGF-β1, and the TGF-β1 in the peritoneal macrophage-conditioned medium (PMCM) could induce proliferation of HSCs and secretion of Col I and III. We selected PMCM at 1:2 dilution as the optimum PMCM (OPMCM). Then we treated HSCs pre-incubated with OPMCM with PAE, and found that the inhibition of HSC proliferation or Col I and III production were closely correlated with the concentration of PAE. Further investigation found that PAE significantly decreased the Smad3 transcription and phosphorylation in HSCs stimulated by OPMCM. In conclusion, SEA plays a key role in hepatic fibrosis by inducing TGF-β1 from PMφs. PAE can exert anti-fibrogenic effects by inhibiting HSCs proliferation and down-regulating Smad3 expression and phosphorylation through TGF-β1 signalling.


Sign in / Sign up

Export Citation Format

Share Document