scholarly journals Abelian gauge theories on the lattice: θ-Terms and compact gauge theory with(out) monopoles

2019 ◽  
Vol 943 ◽  
pp. 114616 ◽  
Author(s):  
Tin Sulejmanpasic ◽  
Christof Gattringer
2016 ◽  
Vol 31 (28n29) ◽  
pp. 1645014
Author(s):  
Alan R. White

Reggeon unitarity and non-Abelian gauge field copies are focused on as two Gribov discoveries that, it is suggested, may ultimately be seen as the most significant and that could, in the far distant future, form the cornerstones of his legacy. The crucial role played by the Gribov ambiguity in the construction of gauge theory bound-state amplitudes via reggeon unitarity is described. It is suggested that the existence of a physical, unitary, S-Matrix in a gauge theory is a major requirement that could even determine the theory.


1991 ◽  
Vol 05 (16n17) ◽  
pp. 2641-2673 ◽  
Author(s):  
MARK G. ALFORD ◽  
JOHN MARCH-RUSSELL

In this review we discuss the formulation and distinguishing characteristics of discrete gauge theories, and describe several important applications of the concept. For the abelian (ℤN) discrete gauge theories, we consider the construction of the discrete charge operator F(Σ*) and the associated gauge-invariant order parameter that distinguishes different Higgs phases of a spontaneously broken U(1) gauge theory. We sketch some of the important thermodynamic consequences of the resultant discrete quantum hair on black holes. We further show that, as a consequence of unbroken discrete gauge symmetries, Grand Unified cosmic strings generically exhibit a Callan-Rubakov effect. For non-abelian discrete gauge theories we discuss in some detail the charge measurement process, and in the context of a lattice formulation we construct the non-abelian generalization of F(Σ*). This enables us to build the order parameter that distinguishes the different Higgs phases of a non-abelian discrete lattice gauge theory with matter. We also describe some of the fascinating phenomena associated with non-abelian gauge vortices. For example, we argue that a loop of Alice string, or any non-abelian string, is super-conducting by virtue of charged zero modes whose charge cannot be localized anywhere on or around the string (“Cheshire charge”). Finally, we discuss the relationship between discrete gauge theories and the existence of excitations possessing exotic spin and statistics (and more generally excitations whose interactions are purely “topological”).


1999 ◽  
Vol 14 (21) ◽  
pp. 3421-3432 ◽  
Author(s):  
A. ASTE ◽  
G. SCHARF

We show for the case of interacting massless vector bosons, how the structure of Yang–Mills theories emerges automatically from a more fundamental concept, namely perturbative quantum gauge invariance. It turns out that the coupling in a non-Abelian gauge theory is necessarily of Yang–Mills type plus divergence- and coboundary-couplings. The extension of the method to massive gauge theories is briefly discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yasar Y. Atas ◽  
Jinglei Zhang ◽  
Randy Lewis ◽  
Amin Jahanpour ◽  
Jan F. Haase ◽  
...  

AbstractQuantum computers have the potential to create important new opportunities for ongoing essential research on gauge theories. They can provide simulations that are unattainable on classical computers such as sign-problem afflicted models or time evolutions. In this work, we variationally prepare the low-lying eigenstates of a non-Abelian gauge theory with dynamically coupled matter on a quantum computer. This enables the observation of hadrons and the calculation of their associated masses. The SU(2) gauge group considered here represents an important first step towards ultimately studying quantum chromodynamics, the theory that describes the properties of protons, neutrons and other hadrons. Our calculations on an IBM superconducting platform utilize a variational quantum eigensolver to study both meson and baryon states, hadrons which have never been seen in a non-Abelian simulation on a quantum computer. We develop a hybrid resource-efficient approach by combining classical and quantum computing, that not only allows the study of an SU(2) gauge theory with dynamical matter fields on present-day quantum hardware, but further lays out the premises for future quantum simulations that will address currently unanswered questions in particle and nuclear physics.


1995 ◽  
Vol 10 (10) ◽  
pp. 1449-1463 ◽  
Author(s):  
G. DI CECIO ◽  
G. PAFFUTI

We find the explicit operatorial form of renormalon type singularities in Abelian gauge theory. Local operators of dimension six take care of the first UV renormalon; nonlocal operators are needed for IR singularities. In the effective Lagrangian constructed with these operators nonlocal imaginary parts appearing in the usual perturbative expansion at large orders are canceled.


2012 ◽  
Vol 12 (4) ◽  
Author(s):  
Vieri Benci ◽  
Claudio Bonanno

AbstractWe consider a non-Abelian gauge theory in ℝ


2002 ◽  
Vol 17 (02) ◽  
pp. 157-174 ◽  
Author(s):  
F. V. GUBAREV ◽  
V. I. ZAKHAROV

We consider the quantum mechanical notion of the geometrical (Berry) phase in SU(2) gauge theory, both in the continuum and on the lattice. It is shown that in the coherent state basis eigenvalues of the Wilson loop operator naturally decompose into the geometrical and dynamical phase factors. Moreover, for each Wilson loop there is a unique choice of U(1) gauge rotations which do not change the value of the Berry phase. Determining this U(1) locally in terms of infinitesimal Wilson loops we define monopole-like defects and study their properties in numerical simulations on the lattice. The construction is gauge dependent, as is common for all known definitions of monopoles. We argue that for physical applications the use of the Lorentz gauge is most appropriate. And, indeed, the constructed monopoles have the correct continuum limit in this gauge. Physical consequences are briefly discussed.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Christian Gross ◽  
Sotirios Karamitsos ◽  
Giacomo Landini ◽  
Alessandro Strumia

Abstract A new dark sector consisting of a pure non-abelian gauge theory has no renormalizable interaction with SM particles, and can thereby realise gravitational Dark Matter (DM). Gauge interactions confine at a scale ΛDM giving bound states with typical lifetimes $$ \tau \sim {M}_{\mathrm{P}1}^4/{\Lambda}_{\mathrm{DM}}^5 $$ τ ∼ M P 1 4 / Λ DM 5 that can be DM candidates if ΛDM is below 100 TeV. Furthermore, accidental symmetries of group-theoretical nature produce special gravitationally stable bound states. In the presence of generic Planck-suppressed operators such states become long-lived: SU(N) gauge theories contain bound states with $$ \tau \sim {M}_{\mathrm{P}1}^8/{\Lambda}_{\mathrm{DM}}^9 $$ τ ∼ M P 1 8 / Λ DM 9 ; even longer lifetimes τ = (MPl/ΛDM)2N−4/ΛDM arise from SO(N) theories with N ≥ 8, and possibly from F4 or E8. We compute their relic abundance generated by gravitational freeze-in and by inflationary fluctuations, finding that they can be viable DM candidates for ΛDM ≳ 1010 GeV.


2008 ◽  
Vol 23 (19) ◽  
pp. 2861-2913 ◽  
Author(s):  
JIAN-WEI CUI ◽  
YUE-LIANG WU

All one-loop renormalization constants for non-Abelian gauge theory are computed in detail by using the symmetry-preserving loop regularization method proposed in Refs. 1 and 2. The resulting renormalization constants are manifestly shown to satisfy Ward–Takahaski–Slavnov–Taylor identities, and lead to the well-known one loop β function for non-Abelian gauge theory of QCD.3-5 The loop regularization method is realized in the dimension of original field theories, it maintains not only symmetries but also divergent behaviors of original field theories with the introduction of two energy scales. Such two scales play the roles of characterizing and sliding energy scales as well as ultraviolet and infrared cutoff energy scales. An explicit check of those identities provides a clear demonstration how the symmetry-preserving loop regularization method can consistently be applied to non-Abelian gauge theories.


Author(s):  
Michael Kachelriess

After reviewing electrodynamics as the special case of an abelian gauge theory, this local symmetry is generalised to non-abelian gauge theories. The curvature of space-time is introduced as analogue of the non-abelian field-strength. Non-abelian gauge theories are quantised using the Fadeev–Popov method and the resulting Feynman rules are derived.


Sign in / Sign up

Export Citation Format

Share Document