Changes in the iron metabolism centered on hepcidin due to high-intensity exercise under restricted food intake without malnutrition

Nutrition ◽  
2021 ◽  
pp. 111179
Author(s):  
Yukiko Kobayashi ◽  
Midori Tanizawa ◽  
Midori Ogata ◽  
Wataru Aoi ◽  
Masashi Kuwahata
2021 ◽  
Author(s):  
Taylor Landry ◽  
Daniel Shookster ◽  
Alec Chaves ◽  
Katrina Free ◽  
Tony Nguyen ◽  
...  

Recent evidence identifies a potent role for aerobic exercise to modulate activity of hypothalamic neurons related to appetite; however, these studies have been primarily performed in male rodents. Since females have markedly different neuronal mechanisms regulating food intake, the current study aimed to determine the effects of acute treadmill exercise on hypothalamic neuron populations involved in regulating appetite in female mice. Mature, untrained female mice were exposed to acute sedentary, low (10m/min), moderate (14m/min), and high (18m/min) intensity treadmill exercise in a randomized crossover design. Mice were fasted 10-hours before exercise and food intake was monitored for 48-hours after bouts. Immunohistochemical detection of cFOS was performed 3-hours post-exercise to determine changes in hypothalamic NPY/AgRP, POMC, tyrosine hydroxylase, and SIM1-expressing neuron activity concurrent with changes in food intake. Additionally, stains for pSTAT3tyr705 and pERKthr202/tyr204 were performed to detect exercise-mediated changes in intracellular signaling. Briefly, moderate and high intensity exercise increased 24-hour food intake by 5.9% and 19%, respectively, while low intensity exercise had no effects. Furthermore, increases in NPY/AgRPARC, SIM1PVN, and tyrosine hydroxylase neuron activity were observed 3-hours after high intensity exercise, with no effects on POMCARC neurons. While no effects of exercise on pERKthr202/tyr204 were observed, pSTAT3tyr705 was elevated specifically in NPY/AgRP neurons 3-hours post-exercise. Overall, aerobic exercise increased activity of several appetite-stimulating neuron populations in the hypothalamus of female mice, which may provide insight into previously reported sexual dimorphisms in post-exercise feeding.


2001 ◽  
Vol 280 (1) ◽  
pp. E83-E91 ◽  
Author(s):  
Luis D. M. C.-B. Ferreira ◽  
Lambert Bräu ◽  
Sasha Nikolovski ◽  
Ghazala Raja ◽  
T. Norman Palmer ◽  
...  

It has recently been shown that food intake is not essential for the resynthesis of the stores of muscle glycogen in fasted animals recovering from high-intensity exercise. Because the effect of diabetes on this process has never been examined before, we undertook to explore this issue. To this end, groups of rats were treated with streptozotocin (60 mg/kg body mass ip) to induce mild diabetes. After 11 days, each animal was fasted for 24 h before swimming with a lead weight equivalent to 9% body mass attached to the tail. After exercise, the rate and the extent of glycogen repletion in muscles were not affected by diabetes, irrespective of muscle fiber composition. Consistent with these findings, the effect of exercise on the phosphorylation state of glycogen synthase in muscles was only minimally affected by diabetes. In contrast to its effects on nondiabetic animals, exercise in fasted diabetic rats was accompanied by a marked fall in hepatic glycogen levels, which, surprisingly, increased to preexercise levels during recovery despite the absence of food intake.


2019 ◽  
Vol 53 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Nazli Khajehnasiri ◽  
Homayoun Khazali ◽  
Farzam Sheikhzadeh ◽  
Mahnaz Ghowsi

AbstractObjective. The hypothalamic arcuate nucleus proopiomelanocortin (POMC) and neuropeptide Y (NPY) circuitries are involved in the inhibition and stimulation of the appetite, respectively. The aim of this study was to investigate the effects of one-month lasting high-intensity exercise on the POMC mRNA and NPY mRNA expression in the above-mentioned brain structure and appetite and food intake levels.Methods. Fourteen male Wistar rats (250±50 g) were used and kept in the well-controlled conditions (22±2 °C, 50±5% humidity, and 12 h dark/light cycle) with food and water ad libitum. The rats were divided into two groups (n=7): 1) control group (C, these rats served as controls) and 2) exercised group (RIE, these rats performed a high-intensity exercise for one month (5 days per week) 40 min daily with speed 35 m/min. The total exercise time was 60 min. The body weight and food intake were recorded continuously during the experiments.Results. The results showed relative mRNA expression of POMC and NPY estimated in the hypothalamic arcuate nucleus. There were no significant differences in the NPY and POMC mRNAs expression levels and food intake between C and RIE groups.Conclusions. The present data indicate that one-month regular intensive exercise did not alter the levels of NPY and POMC mRNAs expression (as two important factors in the regulation of appetite) in the hypothalamic arcuate nucleus and food intake suggesting that this type of exercise itself is not an appropriate procedure for the body weight reduction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Taylor Landry ◽  
Daniel Shookster ◽  
Alec Chaves ◽  
Katrina Free ◽  
Tony Nguyen ◽  
...  

Emerging evidence identifies a potent role for aerobic exercise to modulate activity of neurons involved in regulating appetite; however, these studies produce conflicting results. These discrepancies may be, in part, due to methodological differences, including differences in exercise intensity and pre-exercise energy status. Consequently, the current study utilized a translational, well-controlled, within-subject, treadmill exercise protocol to investigate the differential effects of energy status and exercise intensity on post-exercise feeding behavior and appetite-controlling neurons in the hypothalamus. Mature, untrained male mice were exposed to acute sedentary, low (10m/min), moderate (14m/min), and high (18m/min) intensity treadmill exercise in a randomized crossover design. Fed and 10-hour-fasted mice were used, and food intake was monitored 48h. post-exercise. Immunohistochemical detection of cFOS was performed 1-hour post-exercise to determine changes in hypothalamic NPY/AgRP, POMC, tyrosine hydroxylase, and SIM1-expressing neuron activity concurrent with changes in food intake. Additionally, stains for pSTAT3tyr705 and pERKthr202/tyr204 were performed to detect exercise-mediated changes in intracellular signaling. Results demonstrated that fasted high intensity exercise suppressed food intake compared to sedentary trials, which was concurrent with increased anorexigenic POMC neuron activity. Conversely, fed mice experienced augmented post-exercise food intake, with no effects on POMC neuron activity. Regardless of pre-exercise energy status, tyrosine hydroxylase and SIM1 neuron activity in the paraventricular nucleus was elevated, as well as NPY/AgRP neuron activity in the arcuate nucleus. Notably, these neuronal changes were independent from changes in pSTAT3tyr705 and pERKthr202/tyr204 signaling. Overall, these results suggest fasted high intensity exercise may be beneficial for suppressing food intake, possibly due to hypothalamic POMC neuron excitation. Furthermore, this study identifies a novel role for pre-exercise energy status to differentially modify post-exercise feeding behavior and hypothalamic neuron activity, which may explain the inconsistent results from studies investigating exercise as a weight loss intervention.


Heart & Lung ◽  
2021 ◽  
Vol 50 (5) ◽  
pp. 609-614
Author(s):  
Giovana Salgado Baffa ◽  
Cássia da Luz Goulart ◽  
Flávia Rossi Caruso ◽  
Adriana S. Garcia de Araújo ◽  
Polliana Batista dos Santos ◽  
...  

Author(s):  
Josef Niebauer ◽  
Martin Burtscher

Sudden cardiac death (SCD) still represents an unanticipated and catastrophic event eliciting from cardiac causes. SCD is the leading cause of non-traumatic deaths during downhill skiing and mountain hiking, related to the fact that these sports are very popular among elderly people. Annually, more than 40 million downhill skiers and mountain hikers/climbers visit mountainous regions of the Alps, including an increasing number of individuals with pre-existing chronic diseases. Data sets from two previously published case-control studies have been used to draw comparisons between the SCD risk of skiers and hikers. Data of interest included demographic variables, cardiovascular risk factors, medical history, physical activity, and additional symptoms and circumstances of sudden death for cases. To establish a potential connection between the SCD risk and sport-specific physical strain, data on cardiorespiratory responses to downhill skiing and mountain hiking, assessed in middle-aged men and women, have been included. It was demonstrated that previous myocardial infarction (MI) (odds ratio; 95% CI: 92.8; 22.8–379.1; p < 0.001) and systemic hypertension (9.0; 4.0–20.6; p < 0.001) were predominant risk factors for SCD in skiers, but previous MI (10.9; 3.8–30.9; p < 0.001) and metabolic disorders like hypercholesterolemia (3.4; 2.2–5.2; p < 0.001) and diabetes (7.4; 1.6–34.3; p < 0.001) in hikers. More weekly high-intensity exercise was protective in skiers (0.17; 0.04–0.74; p = 0.02), while larger amounts of mountain sports activities per year were protective in hikers (0.23; 0.1–0.4; <0.001). In conclusion, previous MI history represents the most important risk factor for SCD in recreational skiers and hikers as well, and adaptation to high-intensity exercise is especially important to prevent SCD in skiers. Moreover, the presented differences in risk factor patterns for SCDs and discussed requirements for physical fitness in skiers and hikers will help physicians to provide specifically targeted advice.


Sign in / Sign up

Export Citation Format

Share Document