Exercise Increases NPY/AgRP and TH Neuron Activity in the Hypothalamus of Female Mice

2021 ◽  
Author(s):  
Taylor Landry ◽  
Daniel Shookster ◽  
Alec Chaves ◽  
Katrina Free ◽  
Tony Nguyen ◽  
...  

Recent evidence identifies a potent role for aerobic exercise to modulate activity of hypothalamic neurons related to appetite; however, these studies have been primarily performed in male rodents. Since females have markedly different neuronal mechanisms regulating food intake, the current study aimed to determine the effects of acute treadmill exercise on hypothalamic neuron populations involved in regulating appetite in female mice. Mature, untrained female mice were exposed to acute sedentary, low (10m/min), moderate (14m/min), and high (18m/min) intensity treadmill exercise in a randomized crossover design. Mice were fasted 10-hours before exercise and food intake was monitored for 48-hours after bouts. Immunohistochemical detection of cFOS was performed 3-hours post-exercise to determine changes in hypothalamic NPY/AgRP, POMC, tyrosine hydroxylase, and SIM1-expressing neuron activity concurrent with changes in food intake. Additionally, stains for pSTAT3tyr705 and pERKthr202/tyr204 were performed to detect exercise-mediated changes in intracellular signaling. Briefly, moderate and high intensity exercise increased 24-hour food intake by 5.9% and 19%, respectively, while low intensity exercise had no effects. Furthermore, increases in NPY/AgRPARC, SIM1PVN, and tyrosine hydroxylase neuron activity were observed 3-hours after high intensity exercise, with no effects on POMCARC neurons. While no effects of exercise on pERKthr202/tyr204 were observed, pSTAT3tyr705 was elevated specifically in NPY/AgRP neurons 3-hours post-exercise. Overall, aerobic exercise increased activity of several appetite-stimulating neuron populations in the hypothalamus of female mice, which may provide insight into previously reported sexual dimorphisms in post-exercise feeding.

2021 ◽  
Vol 12 ◽  
Author(s):  
Taylor Landry ◽  
Daniel Shookster ◽  
Alec Chaves ◽  
Katrina Free ◽  
Tony Nguyen ◽  
...  

Emerging evidence identifies a potent role for aerobic exercise to modulate activity of neurons involved in regulating appetite; however, these studies produce conflicting results. These discrepancies may be, in part, due to methodological differences, including differences in exercise intensity and pre-exercise energy status. Consequently, the current study utilized a translational, well-controlled, within-subject, treadmill exercise protocol to investigate the differential effects of energy status and exercise intensity on post-exercise feeding behavior and appetite-controlling neurons in the hypothalamus. Mature, untrained male mice were exposed to acute sedentary, low (10m/min), moderate (14m/min), and high (18m/min) intensity treadmill exercise in a randomized crossover design. Fed and 10-hour-fasted mice were used, and food intake was monitored 48h. post-exercise. Immunohistochemical detection of cFOS was performed 1-hour post-exercise to determine changes in hypothalamic NPY/AgRP, POMC, tyrosine hydroxylase, and SIM1-expressing neuron activity concurrent with changes in food intake. Additionally, stains for pSTAT3tyr705 and pERKthr202/tyr204 were performed to detect exercise-mediated changes in intracellular signaling. Results demonstrated that fasted high intensity exercise suppressed food intake compared to sedentary trials, which was concurrent with increased anorexigenic POMC neuron activity. Conversely, fed mice experienced augmented post-exercise food intake, with no effects on POMC neuron activity. Regardless of pre-exercise energy status, tyrosine hydroxylase and SIM1 neuron activity in the paraventricular nucleus was elevated, as well as NPY/AgRP neuron activity in the arcuate nucleus. Notably, these neuronal changes were independent from changes in pSTAT3tyr705 and pERKthr202/tyr204 signaling. Overall, these results suggest fasted high intensity exercise may be beneficial for suppressing food intake, possibly due to hypothalamic POMC neuron excitation. Furthermore, this study identifies a novel role for pre-exercise energy status to differentially modify post-exercise feeding behavior and hypothalamic neuron activity, which may explain the inconsistent results from studies investigating exercise as a weight loss intervention.


2013 ◽  
Vol 9 (2) ◽  
pp. 103-108
Author(s):  
R.J. Bloomer ◽  
T.M. Farney

Intensity of exercise can influence substrate utilization, with increasing intensity resulting in lower rates of fat oxidation and the reliance on carbohydrate as the preferred fuel. Fat oxidation (or more specifically, mobilization) can be assessed via the measurement of circulating glycerol, with most prior research focusing on aerobic exercise and measurements obtained during the actual exercise bout. The present study determined the degree of fat oxidation/mobilization by measuring plasma glyctierol concentrations during the one hour post-exercise recovery period following three difference exercise bouts. On four different days, exercise trained men (n=12; 23.7±1.1 years) either rested quietly or performed aerobic cycle exercise (60 min at 70% heart rate reserve), 60 s cycle sprints at 100% max wattage obtained during graded exercise testing (GXT) - a total of five, or 15 s cycle sprints at 200% max wattage obtained during GXT - a total of 10. Blood was collected before and at 1, 30 and 60 min post-exercise. Haematocrit and haemoglobin were measured to correct for changes in plasma volume. Glycerol was analysed in plasma and the area under the curve was calculated. Glycerol increased across time (P<0.0001) from pre-exercise (8.4±0.3 μg/dl) to 1 min (13.1±0.7 μg/dl), 30 min (11.3±0.6 μg/dl) and 60 min (9.1±0.5 μg/dl) post-exercise, with 1 min and 30 min post-exercise greater than pre-exercise and 60 min post-exercise (P<0.05). Area under the curve was greater (P=0.0004) for aerobic exercise (24.7±2.0 μg/dl/h), 60 second sprints (23.4±1.9 μg/dl/h) and 15 sec sprints (24.4±1.5 μg/dl/h), as compared to rest (15.3±0.8 μg/dl/h), with no differences noted between exercise bouts (P≯0.05). All exercise bouts increase circulating glycerol, with no differences noted between bouts. Although previous data indicate that low intensity aerobic exercise results in greater fat oxidation than high intensity exercise (when assessed during the actual exercise session), our findings suggest that high intensity exercise may result in similar fat oxidation/mobilization as compared to aerobic exercise during the acute post-exercise period.


2017 ◽  
Vol 235 (3) ◽  
pp. 193-205 ◽  
Author(s):  
Adrian Holliday ◽  
Andrew Blannin

The purpose of the study is to investigate the effect of acute bouts of high-intensity aerobic exercise of differing durations on subjective appetite, food intake and appetite-associated hormones in endurance-trained males. Twelve endurance-trained males (age = 21 ± 2 years; BMI = 21.0 ± 1.6 kg/m2; VO2max = 61.6 ± 6.0 mL/kg/min) completed four trials, within a maximum 28 day period, in a counterbalanced order: resting (REST); 15 min exercise bout (15-min); 30 min exercise bout (30-min) and 45 min exercise bout (45-min). All exercise was completed on a cycle ergometer at an intensity of ~76% VO2max. Sixty minutes post exercise, participants consumed an ad libitum meal. Measures of subjective appetite and blood samples were obtained throughout the morning, with plasma analyzed for acylated ghrelin, total polypeptide tyrosine-tyrosine (PYY) and total glucagon-like peptide 1 (GLP-1) concentrations. The following results were obtained: Neither subjective appetite nor absolute food intake differed between trials. Relative energy intake (intake – expenditure) was significantly greater after REST (2641 ± 1616 kJ) compared with both 30-min (1039 ± 1520 kJ) and 45-min (260 ± 1731 kJ), and significantly greater after 15-min (2699 ± 1239 kJ) compared with 45-min (condition main effect, P < 0.001). GLP-1 concentration increased immediately post exercise in 30-min and 45-min, respectively (condition × time interaction, P < 0.001). Acylated ghrelin was transiently suppressed in all exercise trials (condition × time interaction, P = 0.011); the greatest, most enduring suppression, was observed in 45-min. PYY concentration was unchanged with exercise. In conclusion, high-intensity aerobic cycling lasting up to 45 min did not suppress subjective appetite or affect absolute food intake, but did reduce relative energy intake, in well-trained endurance athletes. Findings question the role of appetite hormones in regulating subjective appetite in the acute post-exercise period.


2019 ◽  
Author(s):  
Joshua E. McGee ◽  
Savanna G. Barefoot ◽  
Nicole R. Gniewek ◽  
Patricia M. Brophy ◽  
Angela Clark ◽  
...  

Abstract Background African Americans have a disproportionate prevalence and incidence of type 2 diabetes compared to Caucasians. Recent evidence indicates low cardiorespiratory fitness (CRF) level, an independent risk factor for type 2 diabetes, is also more prevalent in African Americans than Caucasians. Numerous studies in Caucasian populations suggest vigorous exercise intensity may promote greater improvements in CRF and other type 2 diabetes risk factors (e.g. reduction of glucose/insulin levels, pulse wave velocity, body fat, etc.) than moderate intensity. However, current evidence comparing health benefits of different aerobic exercise intensities on type 2 diabetes risk factors in African Americans is negligible. This is clinically important as African Americans have a greater risk for type 2 diabetes and are less likely to meet public health recommendations for physical activity than Caucasians. The purpose of the High-Intensity exercise to Promote Accelerated improvements in CardiorEspiratory fitness (HI-PACE) study is to evaluate whether high-intensity aerobic exercise elicits greater improvements in CRF, insulin action, and arterial stiffness than moderate-intensity exercise in African Americans. Methods/Design­ A randomized controlled trial will be performed on overweight and obese (body mass index: 25-45 kg/m2) African Americans (35-65 years) (n=60). Participants will be randomized to moderate-intensity (MOD-INT) or high-intensity (HIGH-INT) aerobic exercise training, or a non-exercise control group (CON) for 24 weeks. Supervised exercise will be performed at a heart rate associated with 45-55% and 70-80% of VO2 max in the MOD-INT and the HIGH-INT groups, respectively, for an exercise dose of 600 MET-minutes/week (consistent with public health recommendations). The primary outcome is change in CRF. Secondary outcomes include change in insulin sensitivity (measured via an intravenous glucose tolerance test), skeletal muscle mitochondrial oxidative capacity (via near infrared spectroscopy), skeletal muscle measurements (i.e. citrate synthase, COX IV, GLUT-4, CPT-1, PGC1-α), arterial stiffness (via carotid-femoral pulse wave velocity), body fat, C-reactive protein, and psychological outcomes (quality of life/exercise enjoyment). Discussion The anticipated results of the HI-PACE study will provide vital information on the health effects of high-intensity exercise in African Americans. This study will advance health disparity research and has the potential to influence future public health guidelines for physical activity. Trial Registration ClinicalTrials.gov ID: NCT02892331. Registered on 8 September 2016, https://clinicaltrials.gov/ct2/show/NCT02892331


2018 ◽  
Vol 40 (01) ◽  
pp. 16-22 ◽  
Author(s):  
Alberto Pérez-López ◽  
Marcos Martin-Rincon ◽  
Alfredo Santana ◽  
Ismael Perez-Suarez ◽  
Cecilia Dorado ◽  
...  

AbstractInterleukin (IL)-15 stimulates mitochondrial biogenesis, fat oxidation, glucose uptake and myogenesis in skeletal muscle. However, the mechanisms by which exercise triggers IL-15 expression remain to be elucidated in humans. This study aimed at determining whether high-intensity exercise and exercise-induced RONS stimulate IL-15/IL-15Rα expression and its signaling pathway (STAT3) in human skeletal muscle. Nine volunteers performed a 30-s Wingate test in normoxia and hypoxia (PIO2=75 mmHg), 2 h after placebo or antioxidant administration (α-lipoic acid, vitamin C and E) in a randomized double-blind design. Blood samples and muscle biopsies (vastus lateralis) were obtained before, immediately after, and 30 and 120 min post-exercise. Sprint exercise upregulated skeletal muscle IL-15 protein expression (ANOVA, P=0.05), an effect accentuated by antioxidant administration in hypoxia (ANOVA, P=0.022). In antioxidant conditions, the increased IL-15 expression at 120 min post-exercise (33%; P=0.017) was associated with the oxygen deficit caused by the sprint (r=–0.54; P=0.020); while, IL-15 and Tyr705-STAT3 AUCs were also related (r=0.50; P=0.036). Antioxidant administration promotes IL-15 protein expression in human skeletal muscle after sprint exercise, particularly in severe acute hypoxia. Therefore, during intense muscle contraction, a reduced PO2 and glycolytic rate, and possibly, an attenuated RONS generation may facilitate IL-15 production, accompanied by STAT3 activation, in a process that does not require AMPK phosphorylation.


2020 ◽  
Author(s):  
Karsten Koehler ◽  
Safiya E Beckford ◽  
Elise Thayer ◽  
Alexandra R Martin ◽  
Julie B Boron ◽  
...  

Although exercise modulates appetite regulation and food intake, it remains poorly understood how exercise impacts decision making about food. The purpose of the present study was to assess the impact of an acute exercise bout on hypothetical choices related to the amount and timing of food intake. Forty-one healthy participants (22.0 ± 2.6 years; 23.7 ± 2.5 kg/m2, 56% female) completed 45 minutes of aerobic exercise and a resting control condition in randomized order. Food amount preferences and intertemporal food preferences (preference for immediate vs. delayed consumption) were assessed using electronic questionnaires with visual food. Compared to rest, exercise resulted in a greater increase in the food amount selected, both immediately post exercise (+25.8 ± 11.0 vs. +7.8 ± 11.0 kcal/item, p = 0.02) and 30 min post exercise (+47.3 ± 12.4 vs. +21.3 ± 12.4 kcal/item, p = 0.005). Exercise further resulted in a greater increase in the preference for immediate consumption immediately post exercise (+0.23 ± 0.10 vs. +0.06 ± 0.10; p = 0.03) and 30 min post exercise (+0.30 ± 0.12 vs. +0.08 ± 0.12; p = 0.01). Our findings demonstrate that a single bout of aerobic exercise shifts hypothetical food choices towards greater amounts and more immediate consumption, highlighting the importance of the timing of food choices made in the exercise context.


Medicine ◽  
2020 ◽  
Vol 99 (39) ◽  
pp. e22411
Author(s):  
Geert Kleinnibbelink ◽  
Niels A. Stens ◽  
Alessandro Fornasiero ◽  
Guilherme F. Speretta ◽  
Arie P.J. Van Dijk ◽  
...  

2001 ◽  
Vol 280 (1) ◽  
pp. E83-E91 ◽  
Author(s):  
Luis D. M. C.-B. Ferreira ◽  
Lambert Bräu ◽  
Sasha Nikolovski ◽  
Ghazala Raja ◽  
T. Norman Palmer ◽  
...  

It has recently been shown that food intake is not essential for the resynthesis of the stores of muscle glycogen in fasted animals recovering from high-intensity exercise. Because the effect of diabetes on this process has never been examined before, we undertook to explore this issue. To this end, groups of rats were treated with streptozotocin (60 mg/kg body mass ip) to induce mild diabetes. After 11 days, each animal was fasted for 24 h before swimming with a lead weight equivalent to 9% body mass attached to the tail. After exercise, the rate and the extent of glycogen repletion in muscles were not affected by diabetes, irrespective of muscle fiber composition. Consistent with these findings, the effect of exercise on the phosphorylation state of glycogen synthase in muscles was only minimally affected by diabetes. In contrast to its effects on nondiabetic animals, exercise in fasted diabetic rats was accompanied by a marked fall in hepatic glycogen levels, which, surprisingly, increased to preexercise levels during recovery despite the absence of food intake.


Sign in / Sign up

Export Citation Format

Share Document