An empirical formula for maximum wave setup based on a coupled wave-current model

2018 ◽  
Vol 147 ◽  
pp. 215-226 ◽  
Author(s):  
Chao Ji ◽  
Qinghe Zhang ◽  
Yongsheng Wu
2015 ◽  
Vol 64 (2) ◽  
pp. 215-226
Author(s):  
Tommi Peussa ◽  
Anouar Belahcen

AbstractThe coupling of the propagating stress wave with the eddy current model is presented. The applied stress produces magnetization in the sample that can be measured outside the sample by measuring the resulting magnetic flux density. The stress and flux density measurements are made on a mechanically excited steel bar. The problem is modelled with the finite element method for both the propagating wave and the eddy current. Three aspects are considered: eddy current model using magnetization from the measurements, coupled wave and eddy current models, and coupled different dimensions in the wave model. The measured stress can be reproduced from the measured flux density by modelling. The coupled models work both for stress and flux couplings as well as for the different dimensionality couplings.


Author(s):  
Dale Kerper ◽  
Christian M. Appendini ◽  
Henrik Kofoed-Hansen ◽  
Ida Bro̸ker

For the determination maximum flood elevations, a number of components contributing to the total water level need to be considered. For instance, astronomical tide, storm surge, relative changes in mean sea level, wave setup, wave runup and wave splash. In this study, numerical models were used to evaluate under which conditions wave setup penetrates into an idealized inlet. A number of idealized inlet/lagoon configurations were tested. A coupled wave-current model was used to assess the static component of the wave setup. A Boussinesq wave model was used to assess the influence of the dynamic oscillating component of the wave setup. This study demonstrates how numerical modeling tools can be effectively used to assess how wave setup develops depending on a specific inlet configuration.


Author(s):  
Vengatesan Venugopal ◽  
Arne Vögler

Abstract This paper presents the nature of turbulence parameters produced from 3-dimensional numerical simulations using an ocean scale wave-tidal current model applied to tidal energy sites in the Orkney waters in the United Kingdom. The MIKE 21/3 coupled wave-current model is chosen for this study. The numerical modelling study is conducted in two stages. First, a North Atlantic Ocean large-scale wave model is employed to simulate wave parameters. Spatial and temporal wind speeds extracted from the European Centre for Medium Range Weather Forecast (ECMWF) is utilised to drive the North Atlantic wave model. Secondly, the wave parameters produced from the North Atlantic model are used as boundary conditions to run a coupled wave-tidal current model. A turbulence model representing the turbulence and eddy viscosity within the coupled model is chosen and the turbulence kinetic energy (TKE) due to wave-current interactions are computed. The coupled model is calibrated with Acoustic Doppler and Current Profiler (ADCP) measurements deployed close to a tidal energy site in the Inner Sound of the Pentland Firth. The model output parameters such as the current speed, TKE, horizontal and vertical eddy viscosities, significant wave height, peak wave period and wave directions are presented, and, their characteristics are discussed in detail.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhifa Luo ◽  
Bensheng Huang ◽  
Xiaohong Chen ◽  
Chao Tan ◽  
Jing Qiu ◽  
...  

This study explored the effects of interactions between waves and current on storm surge in the Pearl River Estuary (PRE) using a fully coupled wave–current model. The model was validated based on in situ observations during the traverse of super typhoon Mangkhut. The results indicated that the model could reproduce the storm surge and wave setup processes. Numerical experiments showed that simulations of storm surge are minimally affected by wave setup. The wave setup during super typhoon Mangkhut reached up to 0.23 m and contributed to the total near shore storm surge by up to 8%. The simulations of the coupled model showed a better correlation with observations compared to those of an uncoupled model. The storm surge increased with transport upstream in a tidal-dominated outlet, whereas it decreased in a river-dominated outlet. The storm surge and wave setup increased and decreased, respectively, during spring tide as compared to that during a neap tide. The storm surge increased with increasing runoff in the upper river reaches, whereas there was little change in the tidal-dominated lower river reaches. This research emphasizes the importance of integrating the effects of multiple dynamic factors in the forecasting of storm surge and provides a reference for similar studies in other estuaries with multiple outlets and a complex river network.


2012 ◽  
Vol 30 (2) ◽  
pp. 321-335 ◽  
Author(s):  
Zeng’an Deng ◽  
Li’an Xie ◽  
Guijun Han ◽  
Xuefeng Zhang ◽  
Kejian Wu

1987 ◽  
Vol 109 (4) ◽  
pp. 361-365
Author(s):  
T. Kikuta ◽  
J. L. Fisher ◽  
S. N. Rowland ◽  
W. D. Jolly

The far-field eddy current effect refers to an observed phenomenon in electrically conducting tubular material in which the amplitude of an electromagnetic field induced at one location decays relatively slowly with distance along the tube. This effect and its usefulness for nondestructive evaluation of ferromagnetic pipe were noted as early as 1951 [1]. However, no published work of which the authors are aware has attempted more than a qualitative explanation of the far-field effect [2]. This paper presents a semi-empirical model, verified in laboratory experiments, that describes the behavior quantitatively. The experiments and model show that the far-field effect is due to the presence of a directly coupled wave that is rapidly attenuated by the pipe geometry. The directly coupled wave, in turn, excites eddy currents that travel through the pipe wall and then along the outer surface of the pipe with relatively low attenuation. The model allows an understanding of how the effect scales for varying pipe diameters, wall thicknesses, conductivity, and permeability as well as some aspects of probe design.


Sign in / Sign up

Export Citation Format

Share Document