Far-Field Current Model for Carbon Steel Gas Pipes

1987 ◽  
Vol 109 (4) ◽  
pp. 361-365
Author(s):  
T. Kikuta ◽  
J. L. Fisher ◽  
S. N. Rowland ◽  
W. D. Jolly

The far-field eddy current effect refers to an observed phenomenon in electrically conducting tubular material in which the amplitude of an electromagnetic field induced at one location decays relatively slowly with distance along the tube. This effect and its usefulness for nondestructive evaluation of ferromagnetic pipe were noted as early as 1951 [1]. However, no published work of which the authors are aware has attempted more than a qualitative explanation of the far-field effect [2]. This paper presents a semi-empirical model, verified in laboratory experiments, that describes the behavior quantitatively. The experiments and model show that the far-field effect is due to the presence of a directly coupled wave that is rapidly attenuated by the pipe geometry. The directly coupled wave, in turn, excites eddy currents that travel through the pipe wall and then along the outer surface of the pipe with relatively low attenuation. The model allows an understanding of how the effect scales for varying pipe diameters, wall thicknesses, conductivity, and permeability as well as some aspects of probe design.

2018 ◽  
Vol 147 ◽  
pp. 215-226 ◽  
Author(s):  
Chao Ji ◽  
Qinghe Zhang ◽  
Yongsheng Wu

2015 ◽  
Vol 64 (2) ◽  
pp. 215-226
Author(s):  
Tommi Peussa ◽  
Anouar Belahcen

AbstractThe coupling of the propagating stress wave with the eddy current model is presented. The applied stress produces magnetization in the sample that can be measured outside the sample by measuring the resulting magnetic flux density. The stress and flux density measurements are made on a mechanically excited steel bar. The problem is modelled with the finite element method for both the propagating wave and the eddy current. Three aspects are considered: eddy current model using magnetization from the measurements, coupled wave and eddy current models, and coupled different dimensions in the wave model. The measured stress can be reproduced from the measured flux density by modelling. The coupled models work both for stress and flux couplings as well as for the different dimensionality couplings.


2019 ◽  
Vol 58 (9) ◽  
pp. 095001
Author(s):  
Jiarui Bao ◽  
Shuyan Hu ◽  
Guangxi Hu ◽  
Laigui Hu ◽  
Ran Liu ◽  
...  

Author(s):  
Vengatesan Venugopal ◽  
Arne Vögler

Abstract This paper presents the nature of turbulence parameters produced from 3-dimensional numerical simulations using an ocean scale wave-tidal current model applied to tidal energy sites in the Orkney waters in the United Kingdom. The MIKE 21/3 coupled wave-current model is chosen for this study. The numerical modelling study is conducted in two stages. First, a North Atlantic Ocean large-scale wave model is employed to simulate wave parameters. Spatial and temporal wind speeds extracted from the European Centre for Medium Range Weather Forecast (ECMWF) is utilised to drive the North Atlantic wave model. Secondly, the wave parameters produced from the North Atlantic model are used as boundary conditions to run a coupled wave-tidal current model. A turbulence model representing the turbulence and eddy viscosity within the coupled model is chosen and the turbulence kinetic energy (TKE) due to wave-current interactions are computed. The coupled model is calibrated with Acoustic Doppler and Current Profiler (ADCP) measurements deployed close to a tidal energy site in the Inner Sound of the Pentland Firth. The model output parameters such as the current speed, TKE, horizontal and vertical eddy viscosities, significant wave height, peak wave period and wave directions are presented, and, their characteristics are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document