Experimental evaluation of a mooring system simplification methodology for reducing mooring lines in a VLFS model testing at a moderate water depth

2021 ◽  
Vol 219 ◽  
pp. 107912
Author(s):  
Mingxiao Liang ◽  
Shengwen Xu ◽  
Xuefeng Wang ◽  
Aibing Ding
Author(s):  
Øystein Gabrielsen ◽  
Kjell Larsen

The Aasta Hansteen spar in the Norwegian Sea is designed to be moored with a taut polyester rope mooring system. The water depth at the field is 1300 meters, and due to the short installation season the most efficient hookup is with pre-installed mooring lines, which require the mooring lines to be laid down on the seabed. DNV certification does not allow seabed contact for polyester ropes unless proven that no soil ingress and damage takes place. To be able to certify the ropes Statoil developed a test method including contact with soil, rope movement and forced water flow through the filter construction. Full scale tests were performed with actual rope and Aasta Hansteen soil, both in laboratory and at site. This paper discusses the certification requirements and presents adequate qualification test together with results from testing.


1984 ◽  
Vol 21 (03) ◽  
pp. 234-241
Author(s):  
Mamdouh M. Salama

The design of a mooring system for tension leg platforms (TLPs) becomes more complicated as water depth increases. The use of steel mooring lines requires complicated tensioning, handling, and flotation systems. This paper discusses the basic design requirements for the TLP mooring system and identifies several advanced fiber-reinforced lightweight materials as alternatives to steel. High-modulus carbon fiber/KevlarcircleR fiber hybrid composites and Kevlar ropes appear to offer the optimum mooring systems for TLPs used in the development of large and medium-size reservoirs, respectively.


Author(s):  
Cecília Coelho ◽  
Bruna Nabuco

By monitoring the variation of weights of floating production units (FPUs), the sum of total weight computed by load calculators on board very often does not match the actual displacement based on the current drafts. Differences can also be observed in the trim and heel of FPUs, which present values different from zero degree in the calculations, but in fact they are frequently kept near zero by ballast control. The mooring lines and risers tensions are one of the most uncertain weight items in loading conditions reported by the crew on board, therefore, this paper aims to assess the influence and behavior of these systems to a variety of situations in which FPUs operate. Analyses were performed for semi-submersibles and FPSOs considering two configurations of mooring system: catenary and taut-leg. The purpose is to evaluate how the magnitude of the resulting force varies — and hence how the trim and heel change — for a range of offsets caused by environmental conditions. The effect of mooring lines and risers is also discussed regarding the water depth by means of case studies considering a range of water depths. Actual lines properties and seabed bathymetry from mooring system models of platforms located offshore Brazil have been taken as reference. In short, the mooring lines and risers loads will be calculated for different types of floating production units, mooring system configurations and water depths in order to evaluate their influence on the trim, heel and displacement of FPUs.


2021 ◽  
Author(s):  
Craig R Gage ◽  
Pierre F Liagre ◽  
Caspar N Heyl ◽  
Cesar Del Vecchio

The Perdido platform is a spar located in a water depth of 7,825 feet in the Alaminos Canyon Block 857in the Gulf of Mexico. The mooring system consists of nine mooring lines in three groups of three, spacedapproximately 120 degrees apart between each group. Each mooring line is composed of a platform chain,a multi-segment polyester rope including a 120 feet long test insert at the top, a ground chain, a pile chainand other associated connectors. The mooring lines are connected to suction piles. The Minimum BreakStrength for the Perdido polyester mooring line is 4,000 kips. Installation of the spar hull was completed inSeptember 2008 and the topsides was set in March 2009. The spar and its mooring system were originallydesigned for a twenty (20) year life. On May 4, 2019, mooring line # 6 (ML6) was contacted by a marine vessel down line and was severed.Contact occurred along the polyester test insert. A recovery effort was planned, and the mooring line wasreplaced in early June. The original ML6 was recovered from the seafloor on June 4, 2019 as a part of thatcampaign and submitted to an initial inspection. This paper is not intended to go into either the cause of the incident or the replacement of ML6 but willlook to the inspection of the recovered mooring line and explore its suitability for reuse. Initial inspection ofthe lines suggested minimal damage to the polyester rope segments and raised questions to the impacts of 10years of use. Testing was envisioned as a learning opportunity for the impact of service on polyester mooringand was reinforced by the potential cost savings that could be attained though reuse. A methodology wasdeveloped, supported by initial inspections and a suite of testing was performed. The results of these testsare presented in the following, along with a proposed process for assessing and considering reuse of a linefollowing a drop. Additionally, conclusions will be shared for the process, the results, and the potentialramifications for the industry.


Author(s):  
Yihua Su ◽  
Jianmin Yang ◽  
Longfei Xiao ◽  
Gang Chen

Modeling the deepwater mooring system in present available basin using standard Froude scaling at an acceptable scale presents new challenges. A prospective method is to truncate the full-depth mooring lines and find an equivalent truncated mooring system that can reproduce both static and dynamic response of the full-depth mooring system, but large truncation arise if the water depth where the deepwater platform located is very deep or the available water depth of the basin is shallow. A Cell-Truss Spar operated in 1500m water depth is calibrated in a wave basin with 4m water depth. Large truncation arises even though a small model scale 1:100 is chosen. A series of truncated mooring lines are designed and investigated through numerical simulations, single line model tests and coupled wave basin model tests. It is found that dynamic response of the truncated mooring line can be enlarged by using larger diameter and mass per unit length in air. Although the truncated mooring line with clump presents a “taut” shape, its dynamic characteristics is dominated by the geometry stiffness and it underestimates dynamic response of the full-depth mooring line, even induces high-frequency dynamic response. There are still two obstacles in realizing dynamic similarity for the largely truncated mooring system: lower mean value of the top tension of upstream mooring lines, and smaller low-frequency mooring-induced damping.


2021 ◽  
Vol 9 (2) ◽  
pp. 103
Author(s):  
Dongsheng Qiao ◽  
Binbin Li ◽  
Jun Yan ◽  
Yu Qin ◽  
Haizhi Liang ◽  
...  

During the long-term service condition, the mooring line of the deep-water floating platform may fail due to various reasons, such as overloading caused by an accidental condition or performance deterioration. Therefore, the safety performance under the transient responses process should be evaluated in advance, during the design phase. A series of time-domain numerical simulations for evaluating the performance changes of a Floating Production Storage and Offloading (FPSO) with different broken modes of mooring lines was carried out. The broken conditions include the single mooring line or two mooring lines failure under ipsilateral, opposite, and adjacent sides. The resulting transient and following steady-state responses of the vessel and the mooring line tensions were analyzed, and the corresponding influence mechanism was investigated. The accidental failure of a single or two mooring lines changes the watch circle of the vessel and the tension redistribution of the remaining mooring lines. The results indicated that the failure of mooring lines mainly influences the responses of sway, surge, and yaw, and the change rule is closely related to the stiffness and symmetry of the mooring system. The simulation results could give a profound understanding of the transient-effects influence process of mooring line failure, and the suggestions are given to account for the transient effects in the design of the mooring system.


Author(s):  
Jorge Mendoza ◽  
Jacopo Paglia ◽  
Jo Eidsvik ◽  
Jochen Köhler

Mooring systems that are used to secure position keeping of floating offshore oil and gas facilities are subject to deterioration processes, such as pitting corrosion and fatigue crack growth. Past investigations show that pitting corrosion has a significant effect on reducing the fatigue resistance of mooring chain links. In situ inspections are essential to monitor the development of the corrosion condition of the components of mooring systems and ensure sufficient structural safety. Unfortunately, offshore inspection campaigns require large financial commitments. As a consequence, inspecting all structural components is unfeasible. This article proposes to use value of information analysis to rank identified inspection alternatives. A Bayesian Network is proposed to model the statistical dependence of the corrosion deterioration among chain links at different locations of the mooring system. This is used to efficiently update the estimation of the corrosion condition of the complete mooring system given evidence from local observations and to reassess the structural reliability of the system. A case study is presented to illustrate the application of the framework.


2021 ◽  
Author(s):  
Willemijn Pauw ◽  
Remco Hageman ◽  
Joris van den Berg ◽  
Pieter Aalberts ◽  
Hironori Yamaji ◽  
...  

Abstract Integrity of mooring system is of high importance in the offshore industry. In-service assessment of loads in the mooring lines is however very challenging. Direct monitoring of mooring line loads through load cells or inclinometers requires subsea installation work and continuous data transmission. Other solutions based on GPS and motion monitoring have been presented as solutions to overcome these limitations [1]. Monitoring solutions based on GPS and motion data provide good practical benefits, because monitoring can be conducted from accessible area. The procedure relies on accurate numerical models to model the relation between global motions and response of the mooring system. In this paper, validation of this monitoring approach for a single unit will be presented. The unit under consideration is a turret-moored unit operating in Australia. In-service measurements of motions, GPS and line tensions are available. A numerical time-domain model of the mooring system was created. This model was used to simulate mooring line tensions due to measured FPSO motions. Using the measured unit response avoids the uncertainty resulting from a prediction of the hydrodynamic response. Measurements from load cells in various mooring lines are available. These measurements were compared against the results obtained from the simulations for validation of the approach. Three different periods, comprising a total of five weeks of data, were examined in more detail. Two periods are mild weather conditions with different dominant wave directions. The third period features heavy weather conditions. In this paper, the data set and numerical model are presented. A comparison between the measured and numerically calculated mooring line forces will be presented. Differences between the calculated and measured forces are examined. This validation study has shown that in-service monitoring of mooring line loads through GPS and motion data provides a new opportunity for mooring integrity assessment with reduced monitoring system complexity.


Author(s):  
Jairo Bastos de Araujo ◽  
Roge´rio Diniz Machado ◽  
Cipriano Jose de Medeiros Junior

Petrobras developed a new kind of anchoring device known as Torpedo. This is a steel pile of appropriate weight and shape that is launched in a free fall procedure to be used as fixed anchoring point by any type of floating unit. There are two Torpedoes, T-43 and T-98 weighing 43 and 98 metric tons respectively. On October 2002 T-43 was tested offshore Brazil in Campos Basin. The successful results approved and certified by Bureau Veritas, and the need for a feasible anchoring system for new Petrobras Units in deep water fields of Campos Basin led to the development of a Torpedo with High Holding Power. Petrobras FPSO P-50, a VLCC that is being converted with a spread-mooring configuration will be installed in Albacora Leste field in the second semester of 2004. Its mooring analysis showed that the required holding power for the mooring system would be very high. Drag embedment anchors option would require four big Anchor Handling Vessels for anchor tensioning operations at 1400 m water depth. For this purpose T-98 was designed and its field tests were completed in April 2003. This paper discusses T-98 design, building, tests and ABS certification for FPSO P-50.


Author(s):  
Gang Zou ◽  
Lei Wang ◽  
Feng Zhang

As the offshore industry is developing into deeper and deeper water, station keeping technics are becoming more and more important to the industry. Based on the dynamic positioning system, the thruster assisted mooring system (TAMS) is developed, which consisted of mooring lines and thrusters. The main function of the TAMS is to hold a structure against wind wave and current loads with its thruster and cables, which is mainly evaluated by the holding capacity of the system. The arrangement of the mooring lines (location of anchor or the mooring line angle relative to platform) will directly affect the TAMS holding capacity because of the influence of the directions of the mooring forces. So finding out an optimum arrangement of the mooring lines is essential since the performance of the TAMS depends greatly on the arrangement of the mooring lines. The TAMS of a semi-submersible platform, which is studied in this paper, consisted of eight mooring lines. By fixing the layout of the thrusters and changing the location of each mooring line for every case, the performances of the TAMS are analyzed. The platform motions, mooring line tensions and power consumptions are compared to obtain the optimum arrangement of mooring lines, and thus a thruster assisted mooring system with a better performance can be achieved. Time domain simulation is carried out in this paper to obtain the results.


Sign in / Sign up

Export Citation Format

Share Document