Hybrid-laser welding-induced distortions and residual stresses analysis of large-scale stiffener panel

2022 ◽  
Vol 245 ◽  
pp. 110411
Author(s):  
M. Hashemzadeh ◽  
Y. Garbatov ◽  
C. Guedes Soares
2013 ◽  
Vol 772 ◽  
pp. 193-199 ◽  
Author(s):  
Carsten Ohms ◽  
Rene V. Martins

Bi-metallic piping welds are frequently used in light water nuclear reactors to connect ferritic steel pressure vessel nozzles to austenitic stainless steel primary cooling piping systems. An important aspect for the integrity of such welds is the presence of residual stresses. Measurement of these residual stresses presents a considerable challenge because of the component size and because of the material heterogeneity in the weld regions. The specimen investigated here was a thin slice cut from a full-scale bi-metallic piping weld mock-up. A similar mock-up had previously been investigated by neutron diffraction within a European research project called ADIMEW. However, at that time, due to the wall thickness of the pipe, stress and spatial resolution of the measurements were severely restricted. One aim of the present investigations by high energy synchrotron radiation and neutrons used on this thin slice was to determine whether such measurements would render a valid representation of the axial strains and stresses in the uncut large-scale structure. The advantage of the small specimen was, apart from the easier manipulation, the fact that measurement times facilitated a high density of measurements across large parts of the test piece in a reasonable time. Furthermore, the recording of complete diffraction patterns within the accessible diffraction angle range by synchrotron X-ray diffraction permitted mapping the texture variations. The strain and stress results obtained are presented and compared for the neutron and synchrotron X-ray diffraction measurements. A strong variation of the texture pole orientations is observed in the weld regions which could be attributed to individual weld torch passes. The effect of specimen rocking on the scatter of the diffraction data in the butt weld region is assessed during the neutron diffraction measurements.


Author(s):  
Hui Huang ◽  
Jian Chen ◽  
Blair Carlson ◽  
Hui-Ping Wang ◽  
Paul Crooker ◽  
...  

Due to enormous computation cost, current residual stress simulation of multipass girth welds are mostly performed using two-dimensional (2D) axisymmetric models. The 2D model can only provide limited estimation on the residual stresses by assuming its axisymmetric distribution. In this study, a highly efficient thermal-mechanical finite element code for three dimensional (3D) model has been developed based on high performance Graphics Processing Unit (GPU) computers. Our code is further accelerated by considering the unique physics associated with welding processes that are characterized by steep temperature gradient and a moving arc heat source. It is capable of modeling large-scale welding problems that cannot be easily handled by the existing commercial simulation tools. To demonstrate the accuracy and efficiency, our code was compared with a commercial software by simulating a 3D multi-pass girth weld model with over 1 million elements. Our code achieved comparable solution accuracy with respect to the commercial one but with over 100 times saving on computational cost. Moreover, the three-dimensional analysis demonstrated more realistic stress distribution that is not axisymmetric in hoop direction.


2014 ◽  
Vol 996 ◽  
pp. 463-468
Author(s):  
Nikolaj Ganev ◽  
Kamil Kolařík ◽  
Zdenek Pala ◽  
Stanislav Němeček ◽  
Jiří Čapek

One of the drawbacks of the laser welding is distortion of the welded bodies that is closely linked with the generation and redistribution of residual stresses in the vicinity of the weld. In this contribution, mapping of surface macroscopic residual stresses and grain sizes was performed for several welds created with the laser beam with various speeds. Larger distortions are exhibited by samples manufactured with higher laser beam speed, which also exhibit substantial compressive residual stresses perpendicularly to the welds axis.


Author(s):  
S. J. Lewis ◽  
S. Hossain ◽  
C. E. Truman ◽  
D. J. Smith ◽  
M. Hofmann

A number of previously published works have shown that the presence of residual stresses can significantly affect measurements of fracture toughness, unless they are properly accounted for when calculating parameters such as the crack driving force. This in turn requires accurate, quantitative residual stress data for the fracture specimens prior to loading to failure. It is known that material mechanical properties may change while components are in service, for example due to thermo-mechanical load cycles or neutron embrittlement. Fracture specimens are often extracted from large scale components in order to more accurately determine the current fracture resistance of components. In testing these fracture specimens it is generally assumed that any residual stresses present are reduced to a negligible level by the creation of free surfaces during extraction. If this is not the case, the value of toughness obtained from testing the extracted specimen is likely to be affected by the residual stress present and will not represent the true material property. In terms of structural integrity assessments, this can lead to ‘double accounting’ — including the residual stresses in both the material toughness and the crack driving force, which in turn can lead to unnecessary conservatism. This work describes the numerical modelling and measurement of stresses in fracture specimens extracted from two different welded parent components: one component considerably larger than the extracted specimens, where considerable relaxation would be expected as well as a smaller component where appreciable stresses were expected to remain. The results of finite element modelling, along with residual stress measurements obtained using the neutron diffraction technique, are presented and the likely implications of the results in terms of measured fracture toughness are examined.


2016 ◽  
Vol 61 (2) ◽  
pp. 361-374 ◽  
Author(s):  
Jakob Klassen ◽  
Nils Friedrich ◽  
Wolfgang Fricke ◽  
Thomas Nitschke-Pagel ◽  
Klaus Dilger

2011 ◽  
Vol 70 ◽  
pp. 273-278 ◽  
Author(s):  
Yuri Kudryavtsev ◽  
Jacob Kleiman ◽  
Helena Polezhayeva

The objective of the study described in this paper is to identify the residual stress distribution and relaxation in standard welded specimens as well as in a large-scale welded panel imitating the critical, from the fatigue point of view, zones of ship structure. The residual stresses were measured after welding and in the process of fatigue loading of welded elements by the UltraMARS system that is based on using ultrasound. The measurements had shown that the maximum residual stresses near the welds (4-5 mm away from the weld) reach levels 290-320 MPa that are close to the yield strength of considered material both in welded specimens and in the large scale panel. Analysis of residual stress relaxation in the welded panel under the action of cyclic loading confirmed the fact that within the interval of applied stress ranges corresponding to the multi-cycle region of loading of the welded joints, the relaxation of residual stresses occurs mainly during the first cycle.


2010 ◽  
Vol 652 ◽  
pp. 321-326 ◽  
Author(s):  
Catrin Mair Davies ◽  
Robert C. Wimpory ◽  
Anna Maria Paradowska ◽  
Kamran M. Nikbin

Neutron diffractometer Engin-X at ISIS was used use in this study to investigate the residual stresses in a section of a multi-pass girth welded thick pipe, of nominal thickness 62 mm, which was made of a ferritic-martensitic steel denoted type P92. Measurements in such large component sections are rare, and have driven the neutron diffraction method to the edge of its capabilities. Significant stresses of over 150 MPa have been found in this pipe section, though post weld heat treatment has been performed. The influences of these welding residual stresses in components at operating temperatures are discussed in terms of their relaxation and high temperature fracture behaviour.


1970 ◽  
Vol 92 (1) ◽  
pp. 86-92 ◽  
Author(s):  
H. V. Cordiano

A determination was made of the influence of various mechanical finishing procedures on residual stresses and the resulting effect on the low cycle fatigue life of tee-fillet welds in 1-1/2 in. thick rolled steel plate with a yield strength of 80,000 psi. Included in this work were tee-fillet welds in the as-welded, ground, shot-peened, ground and shot-peened, and mechanically peened condition. Residual stresses were measured by a hole drilling technique developed at the Naval Applied Science Laboratory for application to linearly varying biaxial stress fields. This method has been found suitable for determining residual stresses at any point over a limited area at the toe of the weld. Fatigue tests were conducted on plate type specimens, 32 in. by 29 in. by 1-1/2 in. which were simply supported at two edges, free at the other two edges, and uniformly loaded with compressed air to develop a zero to maximum tension range of stress at the toe of the fillet weld. It was found that tensile residual stresses do not have a significant effect on fatigue life for the type of pulsating load used. Compressive residual stresses have been found to have a beneficial effect on fatigue life. Welds with relatively high residual stresses which were ground smooth to eliminate “stress raisers” showed very good fatigue resistance.


2003 ◽  
Vol 17 (8) ◽  
pp. 645-649 ◽  
Author(s):  
V A Karkhin ◽  
V A Lopota ◽  
N O Pavlova

Sign in / Sign up

Export Citation Format

Share Document