scholarly journals Controlling high-latitude Southern Ocean convection in climate models

2015 ◽  
Vol 86 ◽  
pp. 58-75 ◽  
Author(s):  
Achim Stössel ◽  
Dirk Notz ◽  
F. Alexander Haumann ◽  
Helmuth Haak ◽  
Johann Jungclaus ◽  
...  

2014 ◽  
Vol 27 (16) ◽  
pp. 6189-6203 ◽  
Author(s):  
Shannon Mason ◽  
Christian Jakob ◽  
Alain Protat ◽  
Julien Delanoë

Abstract Clouds strongly affect the absorption and reflection of shortwave and longwave radiation in the atmosphere. A key bias in climate models is related to excess absorbed shortwave radiation in the high-latitude Southern Ocean. Model evaluation studies attribute these biases in part to midtopped clouds, and observations confirm significant midtopped clouds in the zone of interest. However, it is not yet clear what cloud properties can be attributed to the deficit in modeled clouds. Present approaches using observed cloud regimes do not sufficiently differentiate between potentially distinct types of midtopped clouds and their meteorological contexts. This study presents a refined set of midtopped cloud subregimes for the high-latitude Southern Ocean, which are distinct in their dynamical and thermodynamic background states. Active satellite observations from CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) are used to study the macrophysical structure and microphysical properties of the new cloud regimes. The subgrid-scale variability of cloud structure and microphysics is quantified within the cloud regimes by identifying representative physical cloud profiles at high resolution from the radar–lidar (DARDAR) cloud classification mask. The midtopped cloud subregimes distinguish between stratiform clouds under a high inversion and moderate subsidence; an optically thin cold-air advection cloud regime occurring under weak subsidence and including altostratus over low clouds; optically thick clouds with frequent deep structures under weak ascent and warm midlevel anomalies; and a midlevel convective cloud regime associated with strong ascent and warm advection. The new midtopped cloud regimes for the high-latitude Southern Ocean will provide a refined tool for model evaluation and the attribution of shortwave radiation biases to distinct cloud processes and properties.



2020 ◽  
Vol 33 (11) ◽  
pp. 4891-4905 ◽  
Author(s):  
Zachary S. Kaufman ◽  
Nicole Feldl ◽  
Wilbert Weijer ◽  
Milena Veneziani

AbstractWeddell Sea open-ocean polynyas have been observed to occasionally release heat from the deep ocean to the atmosphere, indicating that their sporadic appearances may be an important feature of high-latitude atmosphere–ocean variability. Yet, observations of the phenomenon are sparse and many standard-resolution models represent these features poorly, if at all. We use a fully coupled, synoptic-scale preindustrial control simulation of the Energy Exascale Earth System Model (E3SMv0-HR) to effectively simulate open-ocean polynyas and investigate their role in the climate system. Our approach employs statistical tests of Granger causality to diagnose local and remote drivers of, and responses to, polynya heat loss on interannual to decadal time scales. First, we find that polynya heat loss Granger causes a persistent increase in surface air temperature over the Weddell Sea, strengthening the local cyclonic wind circulation. Along with responding to polynyas, atmospheric conditions also facilitate their development. When the Southern Ocean experiences a rapid poleward shift in the circumpolar westerlies following a prolonged negative phase of the southern annular mode (SAM), Weddell Sea salinity increases, promoting density destratification and convection in the water column. Finally, we find that the reduction of surface heat fluxes during periods of full ice cover is not fully compensated by ocean heat transport into the high latitudes. This imbalance leads to a buildup of ocean heat content that supplies polynya heat loss. These results disentangle the complex, coupled climate processes that both enable the polynya’s existence and respond to it, providing insights to improve the representation of these highly episodic sea ice features in climate models.



2017 ◽  
Vol 30 (20) ◽  
pp. 8107-8126 ◽  
Author(s):  
Anna Cabré ◽  
Irina Marinov ◽  
Anand Gnanadesikan

Abstract A 1000-yr control simulation in a low-resolution coupled atmosphere–ocean model from the Geophysical Fluid Dynamics Laboratory (GFDL) family of climate models shows a natural, highly regular multidecadal oscillation between periods of Southern Ocean (SO) open-ocean convection and nonconvective periods. It is shown here that convective periods are associated with warming of the SO sea surface temperatures (SSTs), and more broadly of the Southern Hemisphere (SH) SSTs and atmospheric temperatures. This SO warming results in a decrease in the meridional gradient of SSTs in the SH, changing the large-scale pressure patterns, reducing the midlatitude baroclinicity and thus the magnitude of the southern Ferrel and Hadley cells, and weakening the SO westerly winds and the SH tropical trade winds. The rearrangement of the atmospheric circulation is consistent with the global energy balance. During convective decades, the increase in incoming top-of-the-atmosphere radiation in the SH is balanced by an increase in the Northern Hemisphere (NH) outgoing radiation. The energy supplying this increase is carried by enhanced atmospheric transport across the equator, as the intertropical convergence zone and associated wind patterns shift southward, toward the anomalously warmer SH. While the critical role of the SO for climate on long, paleoclimate time scales is now beyond debate, the strength and global scale of the teleconnections observed here also suggest an important role for the SO in global climate dynamics on the shorter interannual and multidecadal time scales.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Hayatte Akhoudas ◽  
Jean-Baptiste Sallée ◽  
F. Alexander Haumann ◽  
Michael P. Meredith ◽  
Alberto Naveira Garabato ◽  
...  

AbstractThe Atlantic sector of the Southern Ocean is the world’s main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses—ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4–9.7 Sv) yielding larger rates than tracer-based estimates (3.7–4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m$$^{-3}$$ - 3 $$\gamma _{n}$$ γ n is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.



2021 ◽  
Vol 34 (2) ◽  
pp. 755-772
Author(s):  
Patrik L. Pfister ◽  
Thomas F. Stocker

AbstractThe global-mean climate feedback quantifies how much the climate system will warm in response to a forcing such as increased CO2 concentration. Under a constant forcing, this feedback becomes less negative (increasing) over time in comprehensive climate models, which has been attributed to increases in cloud and lapse-rate feedbacks. However, out of eight Earth system models of intermediate complexity (EMICs) not featuring interactive clouds, two also simulate such a feedback increase: Bern3D-LPX and LOVECLIM. Using these two models, we investigate the causes of the global-mean feedback increase in the absence of cloud feedbacks. In both models, the increase is predominantly driven by processes in the Southern Ocean region. In LOVECLIM, the global-mean increase is mainly due to a local longwave feedback increase in that region, which can be attributed to lapse-rate changes. It is enhanced by the slow atmospheric warming above the Southern Ocean, which is delayed due to regional ocean heat uptake. In Bern3D-LPX, this delayed regional warming is the main driver of the global-mean feedback increase. It acts on a near-constant local feedback pattern mainly determined by the sea ice–albedo feedback. The global-mean feedback increase is limited by the availability of sea ice: faster Southern Ocean sea ice melting due to either stronger forcing or higher equilibrium climate sensitivity (ECS) reduces the increase of the global mean feedback in Bern3D-LPX. In the highest-ECS simulation with 4 × CO2 forcing, the feedback even becomes more negative (decreasing) over time. This reduced ice–albedo feedback due to sea ice depletion is a plausible mechanism for a decreasing feedback also in high-forcing simulations of other models.



2018 ◽  
Vol 31 (12) ◽  
pp. 4727-4743 ◽  
Author(s):  
Wei Liu ◽  
Jian Lu ◽  
Shang-Ping Xie ◽  
Alexey Fedorov

Climate models show that most of the anthropogenic heat resulting from increased atmospheric CO2 enters the Southern Ocean near 60°S and is stored around 45°S. This heat is transported to the ocean interior by the meridional overturning circulation (MOC) with wind changes playing an important role in the process. To isolate and quantify the latter effect, we apply an overriding technique to a climate model and decompose the total ocean response to CO2 increase into two major components: one due to wind changes and the other due to direct CO2 effect. We find that the poleward-intensified zonal surface winds tend to shift and strengthen the ocean Deacon cell and hence the residual MOC, leading to anomalous divergence of ocean meridional heat transport around 60°S coupled to a surface heat flux increase. In contrast, at 45°S we see anomalous convergence of ocean heat transport and heat loss at the surface. As a result, the wind-induced ocean heat storage (OHS) peaks at 46°S at a rate of 0.07 ZJ yr−1 (° lat)−1 (1 ZJ = 1021 J), contributing 20% to the total OHS maximum. The direct CO2 effect, on the other hand, very slightly alters the residual MOC but primarily warms the ocean. It induces a small but nonnegligible change in eddy heat transport and causes OHS to peak at 42°S at a rate of 0.30 ZJ yr−1 (° lat)−1, accounting for 80% of the OHS maximum. We also find that the eddy-induced MOC weakens, primarily caused by a buoyancy flux change as a result of the direct CO2 effect, and does not compensate the intensified Deacon cell.



2021 ◽  
Author(s):  
Marlene Klockmann ◽  
Marie-Luise Kapsch ◽  
Uwe Mikolajewicz

<p><span>Coupled climate models have produced very different states of the Atlantic Meridional Overturning Circulation (AMOC) in simulations of the Last Glacial Maximum (LGM). In particular, many of them failed to capture the shoaling of the upper AMOC cell, which was indicated by reconstructions. In sensitivity simulations with the Max-Planck-Institute Earth System Model (MPI-ESM) we found that the glacial AMOC response is the sum of two large opposing effects: a strengthening and deepening of the upper cell in response to the glacial ice sheets and a weakening and shoaling of the upper cell in response to the low glacial greenhouse gas concentrations. The magnitude of the respective effects likely depends on the background climate, the ice sheet reconstruction used, and model specifics such as the representation of brine release in the Southern Ocean. </span></p><p><span>Transient simulations of the deglaciation with two differently tuned versions of MPI-ESM and two different ice-sheet reconstructions differ strongly in their respective AMOC states during the LGM. These simulations, together with selected PMIP3 and PMIP4 LGM simulations, provide a good opportunity to compare the effect of different ice sheet reconstructions on the glacial AMOC. We compare key variables such as water mass properties, salt transport and Southern Ocean sea-ice formation across this ensemble of opportunity with the aim of increasing our understanding of the role of ice sheets in the glacial AMOC response.</span></p>



2016 ◽  
Author(s):  
Carlos Ordóñez ◽  
David Barriopedro ◽  
Ricardo García-Herrera ◽  
Pedro M. Sousa ◽  
Jordan L. Schnell

Abstract. This paper analyses for the first time the impact of high-latitude blocks and subtropical ridges on near-surface ozone in Europe during a 15-year period. For this purpose, a catalogue of blocks and ridges over the Euro-Atlantic region is used together with a gridded dataset of maximum daily 8-hour running average ozone (MDA8 O3) covering the period 1998–2012. The response of ozone to the location of blocks and ridges with centres in three longitudinal sectors (Atlantic, ATL, 30º–0º W; European, EUR, 0º–30º E; Russian, RUS, 30º–60º E) is examined. The impact of blocks on ozone is regionally and seasonally dependent. In particular, blocks within the EUR sector yield positive ozone anomalies of ~ 5–10 ppb over large parts of central Europe in spring and northern Europe in summer. Over 20 % and 30 % of the days with blocks in that sector register exceedances of the 90th percentile of the seasonal ozone distribution at many European locations during spring and summer, respectively. The impacts of ridges during those seasons are subtle and more sensitive to their specific location, although they can trigger ozone anomalies of ~ 5–10 ppb in Italy and the surrounding countries in summer, eventually exceeding European air quality targets. During winter, surface ozone in the northwest of Europe presents completely opposite responses to blocks and ridges. The anticyclonic circulation associated with winter EUR blocking, and to a lesser extent with ATL blocking, yields negative ozone anomalies between −5 ppb and −10 ppb over the UK, Northern France and the Benelux. Conversely, the enhanced zonal flow around 50˚–60˚ N during the occurrence of ATL ridges favours the arrival of background air masses from the Atlantic and the ventilation of the boundary layer, producing positive ozone anomalies above 5 ppb in an area spanning from the British Isles to Germany. This work provides the first quantitative assessments of the remarkable but distinct impacts that the anticyclonic circulation and the diversion of the zonal flow associated with blocks and ridges exert on surface ozone in Europe. The findings reported here can be exploited in the future to evaluate the modelled responses of ozone to circulation changes within chemical transport models (CTMs) and chemistry-climate models (CCMs).



2013 ◽  
Vol 26 (2) ◽  
pp. 609-621 ◽  
Author(s):  
Maria A. A. Rugenstein ◽  
Michael Winton ◽  
Ronald J. Stouffer ◽  
Stephen M. Griffies ◽  
Robert Hallberg

Abstract Climate models simulate a wide range of climate changes at high northern latitudes in response to increased CO2. They also have substantial disagreement on projected changes of the Atlantic meridional overturning circulation (AMOC). Here, two pairs of closely related climate models are used, with each containing members with large and small AMOC declines to explore the influence of AMOC decline on the high-latitude response to increased CO2. The models with larger AMOC decline have less high-latitude warming and sea ice decline than their small AMOC decline counterpart. By examining differences in the perturbation heat budget of the 40°–90°N region, it is shown that AMOC decline diminishes the warming by weakening poleward ocean heat transport and increasing the ocean heat uptake. The cooling impact of this AMOC-forced surface heat flux perturbation difference is enhanced by shortwave feedback and diminished by longwave feedback and atmospheric heat transport differences. The magnitude of the AMOC decline within model pairs is positively related to the magnitudes of control climate AMOC and Labrador and Nordic Seas convection. Because the 40°–90°N region accounts for up to 40% of the simulated global ocean heat uptake over 100 yr, the process described here influences the global heat uptake efficiency.



Sign in / Sign up

Export Citation Format

Share Document