Bandwidth function matrix-based spectral deconvolution with alternate minimization method

2021 ◽  
pp. 127755
Author(s):  
Chan Huang ◽  
Su Wu ◽  
Yuyang Chang ◽  
Yuwei Fang ◽  
Huaili Qiu
Author(s):  
Seok Lee ◽  
Juyong Park ◽  
Dongkyung Nam

In this article, the authors present an image processing method to reduce three-dimensional (3D) crosstalk for eye-tracking-based 3D display. Specifically, they considered 3D pixel crosstalk and offset crosstalk and applied different approaches based on its characteristics. For 3D pixel crosstalk which depends on the viewer’s relative location, they proposed output pixel value weighting scheme based on viewer’s eye position, and for offset crosstalk they subtracted luminance of crosstalk components according to the measured display crosstalk level in advance. By simulations and experiments using the 3D display prototypes, the authors evaluated the effectiveness of proposed method.


2014 ◽  
Vol 35 (4) ◽  
pp. 791-796
Author(s):  
Wei-bin Li ◽  
Er Gao ◽  
Song-he Song

Author(s):  
Reza Alebrahim ◽  
Pawel Packo ◽  
Mirco Zaccariotto ◽  
Ugo Galvanetto

In this study, methods to mitigate anomalous wave propagation in 2-D Bond-Based Peridynamics (PD) are presented. Similarly to what happens in classical non-local models, an irregular wave transmission phenomenon occurs at high frequencies. This feature of the dynamic performance of PD, limits its potential applications. A minimization method based on the weighted residual point collocation is introduced to substantially extend the frequency range of wave motion modeling. The optimization problem, developed through inverse analysis, is set up by comparing exact and numerical dispersion curves and minimizing the error in the frequency-wavenumber domain. A significant improvement in the wave propagation simulation using Bond-Based PD is observed.


2021 ◽  
pp. 107754632110337
Author(s):  
Arup Maji ◽  
Fernando Moreu ◽  
James Woodall ◽  
Maimuna Hossain

Multi-Input-Multi-Output vibration testing typically requires the determination of inputs to achieve desired response at multiple locations. First, the responses due to each input are quantified in terms of complex transfer functions in the frequency domain. In this study, two Inputs and five Responses were used leading to a 5 × 2 transfer function matrix. Inputs corresponding to the desired Responses are then computed by inversion of the rectangular matrix using Pseudo-Inverse techniques that involve least-squared solutions. It is important to understand and quantify the various sources of errors in this process toward improved implementation of Multi-Input-Multi-Output testing. In this article, tests on a cantilever beam with two actuators (input controlled smart shakers) were used as Inputs while acceleration Responses were measured at five locations including the two input locations. Variation among tests was quantified including its impact on transfer functions across the relevant frequency domain. Accuracy of linear superposition of the influence of two actuators was quantified to investigate the influence of relative phase information. Finally, the accuracy of the Multi-Input-Multi-Output inversion process was investigated while varying the number of Responses from 2 (square transfer function matrix) to 5 (full-rectangular transfer function matrix). Results were examined in the context of the resonances and anti-resonances of the system as well as the ability of the actuators to provide actuation energy across the domain. Improved understanding of the sources of uncertainty from this study can be used for more complex Multi-Input-Multi-Output experiments.


1998 ◽  
Vol 546 ◽  
Author(s):  
V. Ziebartl ◽  
O. Paul ◽  
H. Baltes

AbstractWe report a new method to measure the temperature-dependent coefficient of thermal expansion α(T) of thin films. The method exploits the temperature dependent buckling of clamped square plates. This buckling was investigated numerically using an energy minimization method and finite element simulations. Both approaches show excellent agreement even far away from simple critical buckling. The numerical results were used to extract Cα(T) = α0+α1(T−T0 ) of PECVD silicon nitride between 20° and 140°C with α0 = (1.803±0.006)×10−6°C−1, α1 = (7.5±0.5)×10−9 °C−2, and T0 = 25°C.


Sign in / Sign up

Export Citation Format

Share Document