Direct observation of charge dynamics at electrodes and roles of buffer layers for organic devices via high-frequency impedance spectroscopy

2021 ◽  
pp. 106232
Author(s):  
Hajime Okumoto ◽  
Yasumasa Suzuki ◽  
Junji Mizukado
Author(s):  
Riaz Ahmed ◽  
Kenneth Reifsnider

Electrochemical Impedance Spectroscopy (EIS) is a powerful and proven tool for analyzing AC impedance response. A conventional three electrode EIS method was used to perform the investigation in the present study. Saturated potassium chloride solution was used as the electrolyte and three different material rods were used as working electrodes. Different configurations of electrode area were exposed to the electrolyte as an active area to investigate electrode geometry effects. Counter to working electrode distance was also altered while keeping the working electrode effective area constant to explore the AC response dependence on the variation of ion travel distance. Some controlled experiments were done to validate the experimental setup and to provide a control condition for comparison with experimental results. A frequency range of 100 mHz to 1 MHz was used for all experiments. In our analysis, we have found a noteworthy influence of electrode geometry on AC impedance response. For all electrodes, impedance decreases with the increase of effective area of the electrolyte. High frequency impedance is not as dependent on geometry as low frequency response. The observed phase shift angle drops in the high frequency region with increased working electrode area, whereas at low frequency the reverse is true. Resistance and capacitive reactance both decrease with an increase of area, but resistance response is more pronounce than reactance. For lower frequencies, small changes in working area produce very distinctive EIS variations. Electrode material as well as geometry was systematically varied in the present study. From these and other studies, we hope to develop a fundamental foundation for understanding specific changes in local geometry in fuel cell (and other) electrodes as a method of designing local morphology for specific performance.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1889
Author(s):  
Sounghun Shin ◽  
Yoontae Jung ◽  
Soon-Jae Kweon ◽  
Eunseok Lee ◽  
Jeong-Ho Park ◽  
...  

This paper presents a reconfigurable time-to-digital converter (TDC) used to quantize the phase of the impedance in electrical impedance spectroscopy (EIS). The TDC in the EIS system must handle a wide input-time range for analysis in the low-frequency range and have a high resolution for analysis in the high-frequency range. The proposed TDC adopts a coarse counter to support a wide input-time range and cascaded time interpolators to improve the time resolution in the high-frequency analysis without increasing the counting clock speed. When the same large interpolation factor is adopted, the cascaded time interpolators have shorter measurement time and smaller chip area than a single-stage time interpolator. A reconfigurable time interpolation factor is adopted to maintain the phase resolution with reasonable measurement time. The fabricated TDC has a peak-to-peak phase error of less than 0.72° over the input frequency range from 1 kHz to 512 kHz and the phase error of less than 2.70° when the range is extended to 2.048 MHz, which demonstrates a competitive performance when compared with previously reported designs.


The Analyst ◽  
2014 ◽  
Vol 139 (20) ◽  
pp. 5271-5282 ◽  
Author(s):  
Verena Charwat ◽  
Martin Joksch ◽  
Drago Sticker ◽  
Michaela Purtscher ◽  
Mario Rothbauer ◽  
...  

High-frequency impedance spectroscopy combined with time resolved biomarker quantification and multivariate data analysis enables sensitive monitoring of cell population dynamics.


2017 ◽  
Vol 8 (21) ◽  
pp. 5253-5258 ◽  
Author(s):  
Nicholas C. Anderson ◽  
Gerard M. Carroll ◽  
Ryan T. Pekarek ◽  
Steven T. Christensen ◽  
Jao van de Lagemaat ◽  
...  

Author(s):  
Anatoliy A. Lepeshev ◽  
Alexandr V. Pavlov ◽  
Nikolai A. Drokin

The present study is aimed at obtaining electrically conductive two-component ceramics based on BeO with the addition of micro and nanocrystalline TiO2 powder. The ceramics of the composition (BeO+TiO2) is used in radio-electronic equipment as effective absorbers of microwave radiation and in other areas of modern electronics. The nature of the appearance of electrical conductivity and absorption of the microwave field in (BeO+TiO2) ceramics has not been completely established. The impedance spectroscopy method for the first time investigated the electrical and dielectric characteristics of this ceramics in the frequency range from 100 Hz to 100 MHz, depending on the presence of micro and nano-sized TiO2 phases in the composition of the BeO ceramics. It was established that the static resistance of ceramics with the addition of titanium oxide nanopowder is significantly reduced compared with the resistance of the original ceramics with TiO2 micropowder. It is shown that the real and imaginary components of the dielectric constant of the studied ceramics increase to abnormally large values when the frequency of the effective electric field decreases, and in the high frequency range f ≥ 108 Hz, the process of dielectric relaxation begins, leading to an increase in the dielectric loss tangent. The dielectric characteristics of these ceramic samples under conditions of blocking through conduction are determined


Sign in / Sign up

Export Citation Format

Share Document