The kinetics of the polycrystalline Ag/Ag+-electrode studied by high-frequency impedance spectroscopy

1987 ◽  
Vol 91 (4) ◽  
pp. 469-474 ◽  
Author(s):  
G. Schöne ◽  
W. Wiesbeck ◽  
M. Stoll ◽  
W. J. Lorenz
Author(s):  
Riaz Ahmed ◽  
Kenneth Reifsnider

Electrochemical Impedance Spectroscopy (EIS) is a powerful and proven tool for analyzing AC impedance response. A conventional three electrode EIS method was used to perform the investigation in the present study. Saturated potassium chloride solution was used as the electrolyte and three different material rods were used as working electrodes. Different configurations of electrode area were exposed to the electrolyte as an active area to investigate electrode geometry effects. Counter to working electrode distance was also altered while keeping the working electrode effective area constant to explore the AC response dependence on the variation of ion travel distance. Some controlled experiments were done to validate the experimental setup and to provide a control condition for comparison with experimental results. A frequency range of 100 mHz to 1 MHz was used for all experiments. In our analysis, we have found a noteworthy influence of electrode geometry on AC impedance response. For all electrodes, impedance decreases with the increase of effective area of the electrolyte. High frequency impedance is not as dependent on geometry as low frequency response. The observed phase shift angle drops in the high frequency region with increased working electrode area, whereas at low frequency the reverse is true. Resistance and capacitive reactance both decrease with an increase of area, but resistance response is more pronounce than reactance. For lower frequencies, small changes in working area produce very distinctive EIS variations. Electrode material as well as geometry was systematically varied in the present study. From these and other studies, we hope to develop a fundamental foundation for understanding specific changes in local geometry in fuel cell (and other) electrodes as a method of designing local morphology for specific performance.


1995 ◽  
Vol 398 ◽  
Author(s):  
Sossina M. Haile ◽  
Scott Meilicke

ABSTRACTGadolinium zirconate, Gd2Zr2O7, undergoes an order-disorder transition at ∼1550°C, transforming from a defect fluorite structure (Fm3m) to a pyrochlore structure (Fd3m). Both cations and anions are ordered in the low-temperature, pyrochlore structure. In order to understand the interplay between anion and cation order parameters and ordering rates, the transformation kinetics of Gd2Zr2O7 have been examined via X-ray diffraction. Gadolinium zirconate is of particular interest because the oxygen ion conductivity of the ordered phase is significantly greatly than that of the disordered phase, in contrast to virtually every other known solid electrolyte. This difference in conductivity has provided a second technique for characterizing the transformation kinetics: in situ A.C. impedance spectroscopy. Results of the X-ray diffraction showed the growth of superstructure peak intensity to follow an apparent (time)½ dependence, rather than that expected from a nucleation and growth model. The impedance spectroscopy measurements, on the other hand, showed the conductivity to increase linearly with time. These results suggest the transition is second order in nature.


2001 ◽  
Vol 664 ◽  
Author(s):  
Baojie Yana ◽  
Jeffrey Yanga ◽  
Kenneth Lord ◽  
Subhendu Guha

ABSTRACTA systematic study has been made of the annealing kinetics of amorphous silicon (a-Si) alloy solar cells. The cells were deposited at various rates using H2 dilution with radio frequency (RF) and modified very high frequency (MVHF) glow discharge. In order to minimize the effect of annealing during light soaking, the solar cells were degraded under 30 suns at room temperature to quickly reach their saturated states. The samples were then annealed at an elevated temperature. The J-V characteristics were recorded as a function of annealing time. The correlation of solar cell performance and defect density in the intrinsic layer was obtained by computer simulation. Finally, the annealing activation energy distribution (Ea) was deduced by fitting the experimental data to a theoretical model. The results show that the RF low rate solar cell with high H2 dilution has the lowest Ea and the narrowest distribution, while the RF cell with no H2 dilution has the highest Ea and the broadest distribution. The MVHF cell made at 8Å/s withhigh H2 dilution shows a lower Ea and a narrower distribution than the RF cell made at 3 Å/s, despite the higher rate. We conclude that different annealing kinetics plays an important role in determining the stabilized performance of a-Si alloy solar cells.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1889
Author(s):  
Sounghun Shin ◽  
Yoontae Jung ◽  
Soon-Jae Kweon ◽  
Eunseok Lee ◽  
Jeong-Ho Park ◽  
...  

This paper presents a reconfigurable time-to-digital converter (TDC) used to quantize the phase of the impedance in electrical impedance spectroscopy (EIS). The TDC in the EIS system must handle a wide input-time range for analysis in the low-frequency range and have a high resolution for analysis in the high-frequency range. The proposed TDC adopts a coarse counter to support a wide input-time range and cascaded time interpolators to improve the time resolution in the high-frequency analysis without increasing the counting clock speed. When the same large interpolation factor is adopted, the cascaded time interpolators have shorter measurement time and smaller chip area than a single-stage time interpolator. A reconfigurable time interpolation factor is adopted to maintain the phase resolution with reasonable measurement time. The fabricated TDC has a peak-to-peak phase error of less than 0.72° over the input frequency range from 1 kHz to 512 kHz and the phase error of less than 2.70° when the range is extended to 2.048 MHz, which demonstrates a competitive performance when compared with previously reported designs.


2019 ◽  
Vol 7 (13) ◽  
pp. 7831-7842 ◽  
Author(s):  
Chaofeng Liu ◽  
Haoyu Fu ◽  
Yanyan Pei ◽  
Jiandong Wu ◽  
Vivek Pisharodi ◽  
...  

Electrochemical potential and lithiation kinetics of MnO/C nanocomposites were investigated by crystal field analysis and electrochemical impedance spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document