Antibiofilm and cytotoxic effect of 3,3′-dihydroxycurcumin (DHC) as photosensitizer agent in antimicrobial photodynamic therapy for endodontic purposes

Author(s):  
Jesse Augusto Pereira ◽  
Carlos Roberto Polaquini ◽  
VanessaRodrigues dos Santos ◽  
Karina Sampaio Caiaffa ◽  
Rafaela Laruzo Rabelo ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3012 ◽  
Author(s):  
Laura Monica Dascalu (Rusu) ◽  
Marioara Moldovan ◽  
Doina Prodan ◽  
Irina Ciotlaus ◽  
Violeta Popescu ◽  
...  

The novelty of this study consists on the formulation and evaluation of five complex experimental natural photosensitizers (PS): gel with oregano essential oil (O), gel with methylene blue (AM), gel with a mixture of essential oils (Thieves-H), gel with arnica oil and curcuma extract (CU) and gel with frankincense essential oil (T), used as photosensitizing agents (PS) in antimicrobial photodynamic therapy (aPDT) in the control of microbial biofilm in oral cavity. The experimental PS were characterized by gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, cytotoxicity assay, antimicrobial effect and scanning electron microscopy (SEM). The IR spectra of the experimental PS with essential oils exhibit absorption bands due to the presence of water and glycerol in high quantities. The studied compounds had a reduced cytotoxic effect on cell cultures. The lowest cytotoxic effect was observed in experimental PS with oregano essential oil and methylene blue PS. Essential oils with proven antibacterial capabilities used in experimental PS confer antibacterial activity to the gels in which they are incorporated, an activity that may be more efficient use of a PDT therapy. Single bacteria were detected mainly by SEM after 12 h, while aggregate bacteria and micro colonies dominated the samples at 48 h.


Author(s):  
Pier Poli ◽  
Francisley Avila Souza ◽  
Mattia Manfredini ◽  
Carlo Maiorana ◽  
Mario Beretta

Not required for Clinical case letters according to the authors' guidelines.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 869
Author(s):  
Beatriz Müller Nunes Souza ◽  
Juliana Guerra Pinto ◽  
André Henrique Correia Pereira ◽  
Alejandro Guillermo Miñán ◽  
Juliana Ferreira-Strixino

Staphylococccus aureus is a ubiquitous and opportunistic bacteria associated with high mortality rates. Antimicrobial photodynamic therapy (aPDT) is based on the application of a light source and a photosensitizer that can interact with molecular oxygen, forming Reactive Oxygen Species (ROS) that result in bacterial inactivation. This study aimed to analyze, in vitro, the action of aPDT with Photodithazine® (PDZ) in methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) strains. The strains were incubated with PDZ at 25, 50, 75, and 100 mg/L for 15 min and irradiated with fluences of 25, 50, and 100 J/cm2. The internalization of PDZ was evaluated by confocal microscopy, the bacterial growth by counting the number of colony-forming units, as well as the bacterial metabolic activity post-aPDT and the production of ROS. In both strains, the photosensitizer was internalized; the production of ROS increased when the aPDT was applied; there was a bacterial reduction compared to the control at all the evaluated fluences and concentrations; and, in most parameters, it was obtained complete inactivation with significant difference (p < 0.05). The implementation of aPDT with PDZ in clinical strains of S. aureus has resulted in its complete inactivation, including the MRSA strains.


2021 ◽  
Vol 14 (7) ◽  
pp. 603
Author(s):  
Vanesa Pérez-Laguna ◽  
Isabel García-Luque ◽  
Sofía Ballesta ◽  
Antonio Rezusta ◽  
Yolanda Gilaberte

The present review covers combination approaches of antimicrobial photodynamic therapy (aPDT) plus antibiotics or antifungals to attack bacteria and fungi in vitro (both planktonic and biofilm forms) focused on those microorganisms that cause infections in skin and soft tissues. The combination can prevent failure in the fight against these microorganisms: antimicrobial drugs can increase the susceptibility of microorganisms to aPDT and prevent the possibility of regrowth of those that were not inactivated during the irradiation; meanwhile, aPDT is effective regardless of the resistance pattern of the strain and their use does not contribute to the selection of antimicrobial resistance. Additive or synergistic antimicrobial effects in vitro are evaluated and the best combinations are presented. The use of combined treatment of aPDT with antimicrobials could help overcome the difficulty of fighting high level of resistance microorganisms and, as it is a multi-target approach, it could make the selection of resistant microorganisms more difficult.


Sign in / Sign up

Export Citation Format

Share Document