Antimicrobial photodynamic therapeutic effects of cationic amino acid-porphyrin conjugate 4i on Porphyromonas gingivalis in vitro

Author(s):  
Haiyan Lu ◽  
Xiaomin Luan ◽  
Xiaoying Wu ◽  
Lei Meng ◽  
Xingyu Zhang ◽  
...  
Author(s):  
A. J. Tousimis

The elemental composition of amino acids is similar to that of the major structural components of the epithelial cells of the small intestine and other tissues. Therefore, their subcellular localization and concentration measurements are not possible by x-ray microanalysis. Radioactive isotope labeling: I131-tyrosine, Se75-methionine and S35-methionine have been successfully employed in numerous absorption and transport studies. The latter two have been utilized both in vitro and vivo, with similar results in the hamster and human small intestine. Non-radioactive Selenomethionine, since its absorption/transport behavior is assumed to be the same as that of Se75- methionine and S75-methionine could serve as a compound tracer for this amino acid.


1976 ◽  
Vol 35 (01) ◽  
pp. 049-056 ◽  
Author(s):  
Christian R Klimt ◽  
P. H Doub ◽  
Nancy H Doub

SummaryNumerous in vivo and in vitro experiments, investigating the inhibition of platelet aggregation and the prevention of experimentally-induced thrombosis, suggest that anti-platelet drugs, such as aspirin or the combination of aspirin and dipyridamole or sulfinpyrazone, may be effective anti-thrombotic agents in man. Since 1971, seven randomized prospective trials and two case-control studies have been referenced in the literature or are currently being conducted, which evaluate the effects of aspirin, sulfinpyrazone, or dipyridamole in combination with aspirin in the secondary prevention of myocardial infarction. A critical review of these trials indicates a range of evidence from no difference to a favorable trend that antiplatelet drugs may serve as anti-thrombotic agents in man. To date, a definitive answer concerning the therapeutic effects of these drugs in the secondary prevention of coronary heart disease is not available.


1987 ◽  
Vol 52 (9) ◽  
pp. 2317-2325 ◽  
Author(s):  
Jan Hlaváček ◽  
Jan Pospíšek ◽  
Jiřina Slaninová ◽  
Walter Y. Chan ◽  
Victor J. Hruby

[8-Neopentylglycine]oxytocin (II) and [8-cycloleucine]oxytocin (III) were prepared by a combination of solid-phase synthesis and fragment condensation. Both analogues exhibited decreased uterotonic potency in vitro, each being about 15-30% that of oxytocin. Analogue II also displayed similarly decreased uterotonic potency in vivo and galactogogic potency. On the other hand, analogue III exhibited almost the same potency as oxytocin in the uterotonic assay in vivo and in the galactogogic assay.


1995 ◽  
Vol 60 (7) ◽  
pp. 1229-1235 ◽  
Author(s):  
Ivana Zoulíková ◽  
Ivan Svoboda ◽  
Jiří Velek ◽  
Václav Kašička ◽  
Jiřina Slaninová ◽  
...  

The vasoactive intestinal (poly)peptide (VIP) is a linear peptide containing 28 amino acid residues, whose primary structure indicates a low metabolic stability. The following VIP fragments, as potential metabolites, and their analogues were prepared by synthesis on a solid: [His(Dnp)1]VIP(1-10), VIP(11-14), [D-Arg12]VIP(11-14), [Lys(Pac)15,21,Arg20]VIP(15-22), and VIP(23-28). After purification, the peptides were characterized by amino acid analysis, mass spectrometry, RP HPLC, and capillary zone electrophoresis. In some tests, detailed examination of the biological activity of the substances in vivo and in vitro gave evidence of a low, residual activity of some fragments, viz. a depressoric activity in vivo for [His(Dnp)1]VIP(1-10) and a stimulating activity for the release of α-amylase in vitro and in vivo for [Lys(Pac)15,21,Arg20]VIP(15-22) and VIP(23-28).


2019 ◽  
Vol 34 (1) ◽  
pp. 1247-1258 ◽  
Author(s):  
Asmaa F. Kassem ◽  
Gaber O. Moustafa ◽  
Eman S. Nossier ◽  
Hemat S. Khalaf ◽  
Marwa M. Mounier ◽  
...  

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 19
Author(s):  
Chan-Gi Pack ◽  
Bjorn Paulson ◽  
Yeonhee Shin ◽  
Min Kyo Jung ◽  
Jun Sung Kim ◽  
...  

Controlling the uptake of nanoparticles into cells so as to balance therapeutic effects with toxicity is an essential unsolved problem in the development of nanomedicine technologies. From this point of view, it is useful to use standard nanoparticles to quantitatively evaluate the physical properties of the nanoparticles in solution and in cells, and to analyze the intracellular dynamic motion and distribution of these nanoparticles at a single-particle level. In this study, standard nanoparticles are developed based on a variant silica-based nanoparticle incorporating fluorescein isothiocyanate (FITC) or/and rhodamine B isothiocyanate (RITC) with a variety of accessible diameters and a matching fluorescent cobalt ferrite core-shell structure (Fe2O4/SiO2). The physical and optical properties of the nanoparticles in vitro are fully evaluated with the complementary methods of dynamic light scattering, electron microscopy, and two fluorescence correlation methods. In addition, cell uptake of dual-colored and core/shell nanoparticles via endocytosis in live HeLa cells is detected by fluorescence correlation spectroscopy and electron microscopy, indicating the suitability of the nanoparticles as standards for further studies of intracellular dynamics with multi-modal methods.


Sign in / Sign up

Export Citation Format

Share Document