Clinical Trials in Thrombosis: Secondary Prevention of Myocardial Infarction

1976 ◽  
Vol 35 (01) ◽  
pp. 049-056 ◽  
Author(s):  
Christian R Klimt ◽  
P. H Doub ◽  
Nancy H Doub

SummaryNumerous in vivo and in vitro experiments, investigating the inhibition of platelet aggregation and the prevention of experimentally-induced thrombosis, suggest that anti-platelet drugs, such as aspirin or the combination of aspirin and dipyridamole or sulfinpyrazone, may be effective anti-thrombotic agents in man. Since 1971, seven randomized prospective trials and two case-control studies have been referenced in the literature or are currently being conducted, which evaluate the effects of aspirin, sulfinpyrazone, or dipyridamole in combination with aspirin in the secondary prevention of myocardial infarction. A critical review of these trials indicates a range of evidence from no difference to a favorable trend that antiplatelet drugs may serve as anti-thrombotic agents in man. To date, a definitive answer concerning the therapeutic effects of these drugs in the secondary prevention of coronary heart disease is not available.

2021 ◽  
Author(s):  
Hogjuan Ning ◽  
Haixu Chen ◽  
Jingyu Deng ◽  
Chun Xiao ◽  
Lina Shan ◽  
...  

Abstract Background Exosomes are considered a substitute for stem cell-based therapy for myocardial infarction (MI). FNDC5, a transmembrane protein located in the cytoplasm, plays a crucial role in inflammation diseases and MI repair. Furthermore, our previous study found that FNDC5 pre-conditioning bone marrow-derived mesenchymal stem cells (BMMSCs) could secreted more exosomes, but little was known on MI repair. Methods Exosomes isolated from BMMSCs with or without FNDC5-OV were injected into infarcted hearts. Then, cardiomyocytes apoptosis, and inflammation responses were detected. Furthermore, exosomes were administrated to RAW264.7 macrophage with LPS treatment to investigate its effect on inflammation and macrophage polarization. Results Compared with MSCs-Exo, FNDC5-MSCs-Exo had superior therapeutic effects on anti-inflammation and anti-apoptosis, as well as polarizing M2 macrophage in vivo. Meanwhile, the in vitro results also showed that FNDC5-MSCs–Exo decreased pro-inflammatory secretion and increased anti-inflammatory secretion under LPS stimulation, which partly depressed NF-κB signaling pathway and upregulated Nrf2/HO-1 Axis. Conclusions FNDC5-BMMSCs-derived exosomes play anti-inflammation effects and promote M2 macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 Axis, which may develop a promising cell-free therapy for MI.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongjuan Ning ◽  
Haixu Chen ◽  
Jingyu Deng ◽  
Chun Xiao ◽  
Moyan Xu ◽  
...  

Abstract Background Exosomes are considered a substitute for stem cell-based therapy for myocardial infarction (MI). FNDC5, a transmembrane protein located in the cytoplasm, plays a crucial role in inflammation diseases and MI repair. Furthermore, our previous study found that FNDC5 pre-conditioning bone marrow-derived mesenchymal stem cells (BMMSCs) could secrete more exosomes, but little was known on MI repair. Methods Exosomes isolated from BMMSCs with or without FNDC5-OV were injected into infarcted hearts. Then, cardiomyocytes apoptosis and inflammation responses were detected. Furthermore, exosomes were administrated to RAW264.7 macrophage with LPS treatment to investigate its effect on inflammation and macrophage polarization. Results Compared with MSCs-Exo, FNDC5-MSCs-Exo had superior therapeutic effects on anti-inflammation and anti-apoptosis, as well as polarizing M2 macrophage in vivo. Meanwhile, the in vitro results also showed that FNDC5-MSCs-Exo decreased pro-inflammatory secretion and increased anti-inflammatory secretion under LPS stimulation, which partly depressed NF‐κB signaling pathway and upregulated Nrf2/HO-1 Axis. Conclusions FNDC5-BMMSCs-derived exosomes play anti-inflammation effects and promote M2 macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 Axis, which may develop a promising cell-free therapy for MI.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Eleni Tseliou ◽  
Joseph Fouad ◽  
Geoffrey de Couto ◽  
Ryan Middleton ◽  
Liu Weixin ◽  
...  

Background: Multicellular self-assembling cardiospheres (CSps) exert regenerative and anti-fibrotic effects via paracrine mechanisms. CSp-derived cells are known to secrete exosomes which mediate most or all of the beneficial therapeutic effects. Objective: We evaluated the regenerative capacity of CSp-secreted exosomes in a model of chronic myocardial infarction (MI). We also determined whether CSp-exosomes could convert the phenotype of therapeutically-inert cells. Methods: Exosomes were isolated from CSp-conditioned media by adding a precipitation solution followed by centrifugation. One month post-MI, Wistar Kyoto rats (n=46) with permanent LAD ligation were injected intramyocardially with: a) human dermal fibroblasts (DFs), b) CSp exosomes, c) DFs primed with CSp-exosomes, d) CSps only or e) vehicle. Functional and histological analyses were performed 4 weeks after therapy. Mechanisms were also probed in vitro . Results: In vivo, CSp-exosomes and CSps equally increased ejection fraction (EF= 45±1% [CSp-exo], 44±2% [CSps], 33±1% [placebo] and 35±2% [DFs]) and reduced scar mass (48±8mg [CSp-exo], 45±4mg [CSps], 96±12mg [placebo] and 90±6mg [DFS]; both p<0.01 by one way ANOVA). DFs that had been incubated with CSp-exosomes for 24 hours in culture conferred enhanced benefits compared to unprimed DFs (EF= 41±1% [primed-DFs]; p=0.05 vs unprimed DFs; scar mass= 49±5mg [primed-DFs]; p<0.01 vs unprimed DFs). Confocal imaging revealed internalization of fluorescently-labeled CSp-exosomes in exosome-primed DFs. In vitro , exosome-primed DFs increased tube formation by HUVECs and inhibited cardiomyocyte apoptosis. Immunohistochemistry showed increased vessel density in all groups compared to vehicle or unprimed DFs. Conclusions: Administration of CSp-exosomes recapitulates the regenerative potential and functional benefits of CSps themselves. The surprising ability of CSp-exosomes to confer therapeutic efficacy on inert DFs may represent an unanticipated amplification mechanism for exosome-mediated benefits.


2017 ◽  
Vol 44 (3) ◽  
pp. 1064-1077 ◽  
Author(s):  
Yihua Liu ◽  
Xiaoxi Yang ◽  
Pablo Maureira ◽  
Aude Falanga ◽  
Vanessa Marie ◽  
...  

Background: The mismatch between traditional in vitro cell culture conditions and targeted chronic hypoxic myocardial tissue could potentially hamper the therapeutic effects of implanted bone marrow mesenchymal stem cells (BMSCs). This study sought to address (i) the extent of change to BMSC biological characteristics in different in vitro culture conditions and (ii) the effectiveness of permanent hypoxic culture for cell therapy in treating chronic myocardial infarction (MI) in rats. Methods: rat BMSCs were harvested and cultured in normoxic (21% O2, n=27) or hypoxic conditions (5% O2, n=27) until Passage 4 (P4). Cell growth tests, flow cytometry, and Bio-Plex assays were conducted to explore variations in the cell proliferation, phenotype, and cytokine expression, respectively. In the in vivo set-up, P3-BMSCs cultured in normoxia (n=6) or hypoxia (n=6) were intramyocardially injected into rat hearts that had previously experienced 1-month-old MI. The impact of cell therapy on cardiac segmental viability and hemodynamic performance was assessed 1 month later by 2-Deoxy-2[18F]fluoro-D-glucose (18F-FDG) positron emission tomography (PET) imaging and pressure-volume catheter, respectively. Additional histomorphological examinations were conducted to evaluate inflammation, fibrosis, and neovascularization. Results: Hypoxic preconditioning significantly enhanced rat BMSC clonogenic potential and proliferation without altering the multipotency. Different profiles of inflammatory, fibrotic, and angiogenic cytokine secretion were also documented, with a marked correlation observed between in vitro and in vivo proangiogenic cytokine expression and tissue neovessels. Hypoxic-preconditioned cells presented a beneficial effect on the myocardial viability of infarct segments and intrinsic contractility. Conclusion: Hypoxic-preconditioned BMSCs were able to benefit myocardial perfusion and contractility, probably by modulating the inflammation and promoting angiogenesis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Youming Zhang ◽  
Zichun Cai ◽  
Yunli Shen ◽  
Qizheng Lu ◽  
Wei Gao ◽  
...  

Abstract Backgroud Myocardial infarction (MI) is one of the leading causes of global death. Dendritic cell-derived exosomes (DEXs) provide us with the possibility of improving cardiac function after MI but are limited by low retention times and short-lived therapeutic effects. In this study, we developed a novel drug delivery system incorporating alginate hydrogel that continuously releases DEXs and investigated the mechanisms underlying the action of DEXs in the improvement of cardiac function after MI. Results We incorporated DEXs with alginate hydrogel (DEXs-Gel) and investigated controlled released ability and rheology, and found that DEXs-Gel release DEXs in a sustainable mammer and prolonged the retention time of DEXs but had no detrimental effects on the migration in vivo. Then DEXs-Gel was applicated in the MI model mice, we found that DEXs-Gel siginificantly enhanced the therapeutic effects of DEXs with regards to improving cardiac function after MI. Flow cytometry and immunofluorescence staining revealed that DEXs significantly upregulated the infiltration of Treg cells and M2 macrophages into the border zoom after MI, and DEXs activated regulatory T (Treg) cells and shifted macrophages to reparative M2 macrophages, both in vitro and in vivo. Conclusion Our novel delivery method provides an innovative tool for enhancing the therapeutic effects of DEXs after MI. Further analysis revealed that DEXs exert effect by activating Treg cells and by modifying the polarization of macrophages. Graphic Abstract


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 32-32 ◽  
Author(s):  
Yael Porat ◽  
Valetin Fulga ◽  
Danny Belkin ◽  
Daphna Shimoni ◽  
Adina Belleli ◽  
...  

Abstract Significant progress has been made in recent years in developing therapeutic strategies for the treatment of a variety of cardiovascular disorders, mainly using bone marrow-derived progenitor cells. We hypothesized that blood leukocytes can also serve as a source for a wide range of clinical protocols. We report here the generation in vitro of both angiogenic cell precursors (ACP) and cardiomyocyte (CMC) progenitors from a newly discovered blood-derived multipotent cell population, termed synergetic cell population (SCP), and their function in vitro and in vivo. Progenitor cells were purified from healthy donor blood samples using density-based gradients. SCP-derived ACPs grown in the presence of autologous serum and VEGF exhibited an elongated, spindle-shaped morphology and expressed the stem cell markers CD34 (an average of 23.1% of cells), CD133 (10.2%), and CD117 (10.8%), and the endothelial markers KDR (8.9%), Tie-2 (24.8%), CD144 (41.2%), and CD31 (83.1%). Up to 30% of the cells exhibited Dil-Ac-LDL uptake, typical of endothelial cells. In vitro, ACPs showed organization into capillary tube structures when plated on extracellular matrix gels. An average of 50x106 ACPs were generated from 450 ml blood. CMC progenitors, which resulted from culturing SCP cells in medium containing autologous serum and bFGF followed by activation in a medium containing 5-azacytidine, appeared elongated with dark cytoplasm and expressed the cardiomyocyte markers desmin and troponin (on 19.7% and 52.3% of cells, respectively). The therapeutic potential of blood derived ACPs is currently being evaluated in patients with severe angina pectoris. Seventeen patients on maximal drug therapy have so far been prospectively enrolled, based upon identifying ischemic but viable myocardium in distribution of the coronary arteries that were totally occluded. ACPs (25x106, SE=4.9) were injected via a catheter into the coronary artery. Preliminary results demonstrate safety and improved clinical symptoms at 3 months vs. baseline. Mean Canadian Cardiovascular Scale for angina severity decreased from 1.8±0.8 to 1.06±0.3 (P=0.062) and exercise capacity measured by metabolic equivalents increased from 6.3±2.3 to 7.4 ±2.8 (P= 0.0083). One patient died two weeks after the treatment due to acute myocardial infarction. However, coronary angiography demonstrated acute occlusion of an artery not treated with cells. These results suggest the treatment is safe with preliminary short term beneficial effect. Continued follow-up is currently being conducted to determine the long-term effects of this therapy in a larger number of patients. In order to examine the functional mechanisms underlying the therapeutic effects of ACPs and CMC progenitors, an in-vivo experiment is also being carried out in a nude rat acute myocardial infarction model. We demonstrate here that a newly-discovered multipotent cell population which we term SCP can be isolated from peripheral blood and differentiated into therapeutically effective tissue-committed progenitor cells. The SCP contains hematopoietic stem cells and supportive cells enabling differentiation into various lineages, such as ACPs, cardiomyocyte and neural progenitors (the latter reported in a separate abstract by our group) which have thus been generated.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Senthil Nagarajan ◽  
Jae Kwon Lee

AbstractSesamolin is one of the lignans derived from sesame oil. It has demonstrated significant antioxidant, anti-aging, and anti-mutagenic properties. It also reportedly augments natural killer (NK) cell lysis activity. We previously reported that sesamolin also exerts anticancer effects in vitro and induces enhanced NK cell cytolytic activity against tumor cells. Herein, we aimed to determine the mechanism by which sesamolin prevents and retards tumorigenesis in BALB/c mouse models of leukemia induced by murine (BALB/c) myelomonocytic leukemia WEHI-3B cells. Banded neutrophils, myeloblasts, and monocytic leukemic cells were more abundant in the leukemia model than in normal mice. Sesamolin decreased the number of leukemic cells by almost 60% in the leukemia model mice in vivo; additionally, sesamolin and the positive control drug, vinblastine, similarly hindered neoplastic cell proliferation. Spleen samples were ~ 4.5-fold heavier in leukemic mice than those obtained from normal mice, whereas spleen samples obtained from leukemic mice treated with sesamolin had a similar weight to those of normal mice. Moreover, sesamolin induced a twofold increase in the cytotoxic activity of leukemic mouse NK cells against WEHI-3B cells. These results indicated that sesamolin exerts anti-leukemic effects in vivo.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zeping Qiu ◽  
Jingwen Zhao ◽  
Fanyi Huang ◽  
Luhan Bao ◽  
Yanjia Chen ◽  
...  

AbstractMyocardial fibrosis and ventricular remodeling were the key pathology factors causing undesirable consequence after myocardial infarction. However, an efficient therapeutic method remains unclear, partly due to difficulty in continuously preventing neurohormonal overactivation and potential disadvantages of cell therapy for clinical practice. In this study, a rhACE2-electrospun fibrous patch with sustained releasing of rhACE2 to shape an induction transformation niche in situ was introduced, through micro-sol electrospinning technologies. A durable releasing pattern of rhACE2 encapsulated in hyaluronic acid (HA)—poly(L-lactic acid) (PLLA) core-shell structure was observed. By multiple in vitro studies, the rhACE2 patch demonstrated effectiveness in reducing cardiomyocytes apoptosis under hypoxia stress and inhibiting cardiac fibroblasts proliferation, which gave evidence for its in vivo efficacy. For striking mice myocardial infarction experiments, a successful prevention of adverse ventricular remodeling has been demonstrated, reflecting by improved ejection fraction, normal ventricle structure and less fibrosis. The rhACE2 patch niche showed clear superiority in long term function and structure preservation after ischemia compared with intramyocardial injection. Thus, the micro-sol electrospun rhACE2 fibrous patch niche was proved to be efficient, cost-effective and easy-to-use in preventing ventricular adverse remodeling.


2021 ◽  
Vol 22 (3) ◽  
pp. 1390
Author(s):  
Julia Mester-Tonczar ◽  
Patrick Einzinger ◽  
Johannes Winkler ◽  
Nina Kastner ◽  
Andreas Spannbauer ◽  
...  

Circular RNAs (circRNAs) are crucial in gene regulatory networks and disease development, yet circRNA expression in myocardial infarction (MI) is poorly understood. Here, we harvested myocardium samples from domestic pigs 3 days after closed-chest reperfused MI or sham surgery. Cardiac circRNAs were identified by RNA-sequencing of rRNA-depleted RNA from infarcted and healthy myocardium tissue samples. Bioinformatics analysis was performed using the CIRIfull and KNIFE algorithms, and circRNAs identified with both algorithms were subjected to differential expression (DE) analysis and validation by qPCR. Circ-RCAN2 and circ-C12orf29 expressions were significantly downregulated in infarcted tissue compared to healthy pig heart. Sanger sequencing was performed to identify the backsplice junctions of circular transcripts. Finally, we compared the expressions of circ-C12orf29 and circ-RCAN2 between porcine cardiac progenitor cells (pCPCs) that were incubated in a hypoxia chamber for different time periods versus normoxic pCPCs. Circ-C12orf29 did not show significant DE in vitro, whereas circ-RCAN2 exhibited significant ischemia-time-dependent upregulation in hypoxic pCPCs. Overall, our results revealed novel cardiac circRNAs with DE patterns in pCPCs, and in infarcted and healthy myocardium. Circ-RCAN2 exhibited differential regulation by myocardial infarction in vivo and by hypoxia in vitro. These results will improve our understanding of circRNA regulation during acute MI.


2021 ◽  
Vol 1 (1) ◽  
pp. 84-95
Author(s):  
Patience O. Obi ◽  
Jennifer E. Kent ◽  
Maya M. Jeyaraman ◽  
Nicole Askin ◽  
Taiana M. Pierdoná ◽  
...  

Asthma is the most common pediatric disease, characterized by chronic airway inflammation and airway hyperresponsiveness. There are several management options for asthma, but no specific treatment. Extracellular vesicles (EVs) are powerful cellular mediators of endocrine, autocrine and paracrine signalling, and can modulate biophysiological function in vitro and in vivo. A thorough investigation of therapeutic effects of EVs in asthma has not been conducted. Therefore, this systematic review is designed to synthesize recent literature on the therapeutic effects of EVs on physiological and biological outcomes of asthma in pre-clinical studies. An electronic search of Web of Science, EMBASE, MEDLINE, and Scopus will be conducted on manuscripts published in the last five years that adhere to standardized guidelines for EV research. Grey literature will also be included. Two reviewers will independently screen the selected studies for title and abstract, and full text based on the eligibility criteria. Data will be extracted, narratively synthesized and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. This systematic review will summarize the current knowledge from preclinical studies investigating the therapeutic effects of EVs on asthma. The results will delineate whether EVs can mitigate biological hallmarks of asthma, and if so, describe the underlying mechanisms involved in the process. This insight is crucial for identifying key pathways that can be targeted to alleviate the burden of asthma. The data will also reveal the origin, dosage and biophysical characteristics of beneficial EVs. Overall, our results will provide a scaffold for future intervention and translational studies on asthma treatment.


Sign in / Sign up

Export Citation Format

Share Document