Antimicrobial activity, antiaflatoxigenic potential and in situ efficacy of novel formulation comprising of Apium graveolens essential oil and its major component

2019 ◽  
Vol 160 ◽  
pp. 102-111 ◽  
Author(s):  
Somenath Das ◽  
Vipin Kumar Singh ◽  
Abhishek Kumar Dwivedy ◽  
Anand Kumar Chaudhari ◽  
Neha Upadhyay ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2185
Author(s):  
Miroslava Kačániová ◽  
Lucia Galovičová ◽  
Petra Borotová ◽  
Veronika Valková ◽  
Hana Ďúranová ◽  
...  

The essential oil of Syzygium (S.) aromaticum (CEO) is known for its good biological activity. The aim of the research was to evaluate in vitro and in situ antimicrobial and antibiofilm activity of the essential oil produced in Slovakia. The main components of CEO were eugenol 82.4% and (E)-caryophyllene 14.0%. The antimicrobial activity was either weak or very strong with inhibition zones ranging from 4.67 to 15.78 mm in gram-positive and gram-negative bacteria and from 8.22 to 18.56 mm in yeasts and fungi. Among the tested bacteria and fungi, the lowest values of MIC were determined for Staphylococcus (S.) aureus and Penicillium (P.) expansum, respectively. The vapor phase of CEO inhibited the growth of the microscopic filamentous fungi of the genus Penicillium when tested in situ on bread. The strongest effect of mycelia inhibition in a bread model was observed against P. expansum at concentrations of 250 and 500 μL/mL. The best antimicrobial activity of CEO in the carrot model was found against P. chrysosenum. Differences between the mass spectra of Bacillus (B.) subtilis biofilms on the tested surfaces (wood, glass) and the control sample were noted from the seventh day of culture. There were some changes in mass spectra of Stenotrophomonas (S.) maltophilia, which were observed in both experimental groups from the fifth day of culture. These findings confirmed the impact of CEO on the protein structure of older biofilms. The findings indicate that, besides being safe and sensorially attractive, S. aromaticum has antimicrobial activity, which makes it a potential substitute for chemical food preservatives.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1959
Author(s):  
Lucia Galovičová ◽  
Petra Borotová ◽  
Veronika Valková ◽  
Nenad L. Vukovic ◽  
Milena Vukic ◽  
...  

Thymus vulgaris essential oil has potential good biological activity. The aim of the research was to evaluate the biological activity of the T. vulgaris essential oil from the Slovak company. The main components of T. vulgaris essential oil were thymol (48.1%), p-cymene (11.7%), 1,8-cineole (6.7), γ-terpinene (6.1%), and carvacrol (5.5%). The antioxidant activity was 85.2 ± 0.2%, which corresponds to 479.34 ± 1.1 TEAC. The antimicrobial activity was moderate or very strong with inhibition zones from 9.89 to 22.44 mm. The lowest values of MIC were determined against B. subtilis, E. faecalis, and S. aureus. In situ antifungal analysis on bread shows that the vapor phase of T. vulgaris essential oil can inhibit the growth of the microscopic filamentous fungi of the genus Penicillium. The antimicrobial activity against S. marcescens showed 46.78–87.80% inhibition at concentrations 62.5–500 µL/mL. The MALDI TOF MS analyses suggest changes in the protein profile of biofilm forming bacteria P. fluorescens and S. enteritidis after the fifth and the ninth day, respectively. Due to the properties of the T. vulgaris essential oil, it can be used in the food industry as a natural supplement to extend the shelf life of the foods.


2021 ◽  
Vol 24 (2) ◽  
pp. 81-88
Author(s):  
Miroslava Kačániová ◽  
Lucia Galovičová ◽  
Veronika Valková ◽  
Hana Ďuranová ◽  
Petra Borotová ◽  
...  

Abstract The study was aimed at analyzing chemical composition, and biological and antibiofilm activity of Salvia officinalis L. essential oil (EO) with MALDI-TOF MS Biotyper. The main compounds of S. officinalis EO were a-thujone 24.6%, camphor 20.6%, 1,8-cineole 12.1%, and a-humulene 5.8%. Free radical scavenging activity was medium high. The highest antimicrobial activity was observed against Bacillus subtilis. Changes in the biofilm structure confirmed the inhibitory action of S. officinalis and the most pronounced effect was observed in B. subtilis biofilm. The highest inhibition in situ in antimicrobial activity was 78.45% at 125 µ.L−1 on apple for B. subtilis.


2021 ◽  
Vol 13 (8) ◽  
pp. 4594
Author(s):  
Abdelaziz Ed-Dra ◽  
Luca Nalbone ◽  
Fouzia Rhazi Filali ◽  
Najla Trabelsi ◽  
Yassine Oulad El Majdoub ◽  
...  

Essential oils were proposed as natural additives to ensure food safety and quality in a more sustainable approach. The chemical composition of Thymus vulgaris essential oil (TV-EO) collected from Morocco, its antioxidant and antimicrobial activity against different serotypes of Salmonella enterica subsp. enterica was investigated. A mathematical model was implemented to predict the Salmonella behavior when exposed to TV-EO. In situ antimicrobial activity and sensory influence were tested in minced poultry meat experimentally contaminated with Salmonella and treated with TV-EO. Hydrodistillation was used to extract TV-EO, and gas chromatography-mass spectrometry (GC-MS) analysis found thymol as the most representative compound. Results of the antioxidant activity showed an IC50 of 0.29 ± 0.04 mg/mL, EC50 of 0.74 ± 0.08 mg/mL, and RC50 of 0.59 ± 0.06 mg/mL. All the Salmonella strains were susceptible to TV-EO with performing results for the disc diffusion method (inhibition diameters ranged between 24 ± 0.4mm and 32 ± 0.6 mm), determination of minimum inhibitory concentration (MIC; 0.5%) and minimum bactericidal concentration (MBC; 1%), sublethal-injured cells (7.99 ± 0.08%), in situ activity (growth inhibition after 3 days), and meat sensory preservation (up to 1 week). The implemented mathematical model well fitted the Salmonella growth curve. TV-EO with significant antioxidant and antibacterial activities was suitable to ensure food safety and quality consistent with the new sustainable trends in the food field.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
SN Ebrahimi ◽  
M Yousefzadi ◽  
A Sonboli ◽  
F Miraghasi ◽  
S Ghiasi ◽  
...  

Author(s):  
Alev ONDER ◽  
Suna Sibel GURPINAR, Mujde ERYILMAZ ◽  
Bayram Kagan AKAY, Ahsen Sevde CINAR

Spices are a part of the plants used for many purposes as preservatives and as colorants in foods or as medicinal intention. Main aim of the present research was to estimate the potential antimicrobial activity of some spices from Apiaceae family such as Amni visnaga (Diş otu, Hıltan), Anethum graveolens (Dereotu), Apium graveolens (Kereviz), Coriandrum sativum (Kişniş), Cuminum cyminum (Kimyon), Daucus carota (Havuç), Foeniculum vulgare (Rezene), Petroselinum sativum (Maydanoz), Pimpinella anisum (Anason). Thus, the fruits of the plants are used in the experiments. The fruits have been extracted by n-hexane, and all extracts have been subjected to TLC (Thin Layer Chromatography). The n-hexane extracts were screened for their potential in vitro antibacterial activity against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, Pseudomonas aeruginosa ATCC 27853 and antifungal activity against Candida albicans ATCC 10231 by microbroth dilution method. The hexane extracts of the fruits of Coriandrum sativum, Anethum graveolens, Daucus carota, and Pimpinella anisum did not show antimicrobial activity against tested microorganisms. Except these, the other extracts having MIC values of 2.5-5-10 mg/mL exhibited antimicrobial effect against some tested microorganisms. These results demonstrate that the extracts which have an antimicrobial effect can probably play a role as an antimicrobial agent owing to their nonpolar components which are accumulated to the n-hexane extracts.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mojgan Alizadeh ◽  
Akram Arianfar ◽  
Ameneh Mohammadi

Objective: Ziziphora clinopodioides is an edible medicinal plant belongs to the Labiatae family that widespread all over Iran. It used as culinary and also in cold and cough treatments in Iran. The aim of present work was to evaluate the effect of different timeframes during the hydrodistillation on essential oil composition, antimicrobial and antioxidant activity. Materials and Methods: The essential oil of Z. clinopodiodes was extracted via hydrodistillation with Clevenger apparatus. The fractions of essential oil were captured at 6 times from the beginning of the distillation: (10, 20, 60, 120, 180 and 240 min). The fractions of essential oil were analyzed by GC/MS and their antibacterial, antifungal and antioxidant activities were studied by Disk - well diffusion and DPPH methods respectively. Results: Six distillation times and whole essential oil were captured during the hydrodistillation. Essential oil yield dropped off significantly during distillation progressed (1.0% for 10 min and 0.025 for 240 min). 1,8 Cineol, Isomenthone, Pulegone, Piperitenone and Citronellic acid were major compounds in fractions and they were affected by distillation times. Pulegone was major compound in all of essential oils. In antioxidant activity assay, whole essential oil was stronger than was stronger than positive control and fractions of essential oil, because of higher levels of Isomenthone, Piperitenone and Citronellic acid. Strongest antimicrobial activity against S. aureus, E. coli and C. albicans was observed from 10 min fraction. Conclusion: Our results indicated that distillation time can create essential oils with specific properties and we can achieve to more efficient essential oil in short times.


2020 ◽  
Vol 10 ◽  
Author(s):  
Navadha Bhatt ◽  
Navabha Joshi ◽  
Kapil Ghai ◽  
Om Prakash

Background: The Lamiaceae (Labiatae) is one of the most diverse and widespread plant families’ in terms of ethno medicine and its medicinal value is based on the volatile oils concentration. This family is important for flavour, fragrance and medicinal properties. Manyplants belonging to this family have indigenous value. Method: The essential oil of Plectranthus gerardianusBenth. (Lamiaceae), was analysed by GC and GC-MS analysis, while the major component was isolated and conformed by NMR spectroscopy. Result: The oil was found to be rich in oxygenated monoterpenes, which contribute around 62% of the total oil. The major components identified were fenchone (22.90%) and carvenone oxide (16.75%), besides other mono and sesquiterpenoids. The in-vitro antimicrobial activity of essential oil was tested against three gram negative bacteria viz. Pasteurellamultocida, Escherichia coli, and Salmonella enterica, two gram positive bacteria viz. Staphylococcus aureus and Bacillus subtilis and two fungi viz. Candida albicans and Aspergillusflavus. The antimicrobial activity of the oil was also compared to the antimicrobial activity of leaf essential oil of another Himalayan plant viz. Nepetacoerulescens. Conclusion: The oil showed in-vitro antimicrobial activity against all the microbial strains and can lessen the ever-growing demand of potentially hazardous antibiotics for treatment.


Sign in / Sign up

Export Citation Format

Share Document