Evaluation of antimicrobial potential of some spices from apiaceae sold in herbal shops

Author(s):  
Alev ONDER ◽  
Suna Sibel GURPINAR, Mujde ERYILMAZ ◽  
Bayram Kagan AKAY, Ahsen Sevde CINAR

Spices are a part of the plants used for many purposes as preservatives and as colorants in foods or as medicinal intention. Main aim of the present research was to estimate the potential antimicrobial activity of some spices from Apiaceae family such as Amni visnaga (Diş otu, Hıltan), Anethum graveolens (Dereotu), Apium graveolens (Kereviz), Coriandrum sativum (Kişniş), Cuminum cyminum (Kimyon), Daucus carota (Havuç), Foeniculum vulgare (Rezene), Petroselinum sativum (Maydanoz), Pimpinella anisum (Anason). Thus, the fruits of the plants are used in the experiments. The fruits have been extracted by n-hexane, and all extracts have been subjected to TLC (Thin Layer Chromatography). The n-hexane extracts were screened for their potential in vitro antibacterial activity against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, Pseudomonas aeruginosa ATCC 27853 and antifungal activity against Candida albicans ATCC 10231 by microbroth dilution method. The hexane extracts of the fruits of Coriandrum sativum, Anethum graveolens, Daucus carota, and Pimpinella anisum did not show antimicrobial activity against tested microorganisms. Except these, the other extracts having MIC values of 2.5-5-10 mg/mL exhibited antimicrobial effect against some tested microorganisms. These results demonstrate that the extracts which have an antimicrobial effect can probably play a role as an antimicrobial agent owing to their nonpolar components which are accumulated to the n-hexane extracts.

2019 ◽  
pp. 1-3
Author(s):  
Alev ONDER ◽  
Suna Sibel GURPINAR, Mujde ERYILMAZ ◽  
Bayram Kagan AKAY, Ahsen Sevde CINAR

Spices are a part of the plants used for many purposes as preservatives and as colorants in foods or as medicinal intention. Main aim of the present research was to estimate the potential antimicrobial activity of some spices from Apiaceae family such as Amni visnaga (Diş otu, Hıltan), Anethum graveolens (Dereotu), Apium graveolens (Kereviz), Coriandrum sativum (Kişniş), Cuminum cyminum (Kimyon), Daucus carota (Havuç), Foeniculum vulgare (Rezene), Petroselinum sativum (Maydanoz), Pimpinella anisum (Anason). Thus, the fruits of the plants are used in the experiments. The fruits have been extracted by n-hexane, and all extracts have been subjected to TLC (Thin Layer Chromatography). The n-hexane extracts were screened for their potential in vitro antibacterial activity against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, Pseudomonas aeruginosa ATCC 27853 and antifungal activity against Candida albicans ATCC 10231 by microbroth dilution method. The hexane extracts of the fruits of Coriandrum sativum, Anethum graveolens, Daucus carota, and Pimpinella anisum did not show antimicrobial activity against tested microorganisms. Except these, the other extracts having MIC values of 2.5-5-10 mg/mL exhibited antimicrobial effect against some tested microorganisms. These results demonstrate that the extracts which have an antimicrobial effect can probably play a role as an antimicrobial agent owing to their nonpolar components which are accumulated to the n-hexane extracts.


1982 ◽  
Vol 60 (8) ◽  
pp. 1399-1403 ◽  
Author(s):  
Ernest Spitzer ◽  
John N. A. Lott

The chemical composition of the calcium-rich crystal inclusions present in the seed protein bodies of carrot (Daucus carota L. cv. Imperator 408), wild carrot (Daucus carota L.), caraway (Carum carvi L.), anise (Pimpinella anisum L.), dill (Anethum graveolens L.), celery (Apium graveolens L. cv. Tall Utah), fennel (Foeniculum vulgare Mill.), parsnip (Pastinaca sativa L. cv. Hollow Crown), parsley (Petroselinum sativum L. cv. Moss Curled), and chervil (Anthriscus cerefolium L. cv. Curled) was determined. Using a variety of methods including X-ray diffraction, infrared spectroscopy, microincineration, energy dispersive X-ray analysis, solubility studies, and staining, the chemical composition of the calcium-rich crystal inclusions was identified as calcium oxalate.


1982 ◽  
Vol 60 (8) ◽  
pp. 1404-1408 ◽  
Author(s):  
John N. A. Lott ◽  
Ernest Spitzer ◽  
Catherine M. Vollmer

Calcium mobilization into developing seedlings of several umbelliferous plants including carrot (Daucus carota L. cv. Imperator 408), wild carrot (Daucus carota L.), caraway (Carum carvi L.), anise (Pimpinella anisum L.), dill (Anethum graveolens L.), celery (Apium graveolens L. cv. Tall Utah), fennel (Foeniculum vulgare Mill.), parsnip (Pastinaca sativa L. cv. Hollow Crown), parsley (Petroselinum sativum L. cv. Moss Curled), and chervil (Anthriscus cerefolium L. cv. Curled) was investigated with emphasis on carrot and celery. Calcium determinations using atomic absorption spectrometry of carrot and celery embryos obtained from dry mericarps and carrot and celery seedlings collected when the pericarp plus testa plus endosperm remains fell off the seedlings, revealed that some calcium uptake occurred in carrot and possibly celery. It is possible that some of the calcium obtained by the seedlings came from the calcium oxalate crystals but the calcium could also have originated from other calcium sources within the endosperm. Polarized light studies of endosperm remains from carrot, celery, and the other members of the family Umbelliferae investigated, revealed that large numbers of calcium oxalate crystals were present in the endosperm remains after separation from the seedlings. The results of these studies indicate that calcium oxalate crystals are not used extensively as a calcium source during germination and early seedling growth.


1982 ◽  
Vol 60 (8) ◽  
pp. 1392-1398 ◽  
Author(s):  
Ernest Spitzer ◽  
John N. A. Lott

The elemental composition of the protein bodies from several members of the Umbelliferae including carrot (Daucus carota L. cv. Imperator 408), wild carrot (Daucus carota L.), caraway (Carum carvi L.), anise (Pimpinella anisum L.), dill (Anethum graveolens L.), celery (Apium graveolens L. cv. Tall Utah), fennel (Foeniculum vulgare Mill.), parsnip (Pastinaca sativa L. cv. Hollow Crown), parsley (Petroselinum sativum L. cv. Moss Curled), and chervil (Anthriscus cerefolium L. cv. Curled) was determined using energy dispersive X-ray analysis. Globoid crystals in the endosperm usually contained P, K, and Mg or infrequently P, K, Mg, and Ca. In the embryos of carrot and caraway, P was always present with a combination of K, Mg, or Ca. Calcium was the only element detectable in the calcium-rich crystals. The proteinaceous matrix always contained S and K regardless of the inclusion present in the protein body.Quantitative determinations of P, Mg, K, and Ca are presented for all members studied except wild carrot, chervil, celery, and fennel. In all species analysed in this manner K or Ca were present in the highest amounts followed by P and Mg. Calcium-localization studies showed that most of the Ca is located in the endosperm and pericarp portions of the mericarp.


1982 ◽  
Vol 60 (8) ◽  
pp. 1381-1391 ◽  
Author(s):  
Ernest Spitzer ◽  
John N. A. Lott

The structure of the protein bodies from seeds of the family Umbelliferae has not been studied extensively since late in the 19th century. Using light and electron microscopy structural aspects of the protein bodies of carrot (Daucus carota L. cv. Imperator 408), wild carrot (Daucus carota L.), caraway (Carum carvi L.), anise (Pimpinella anisum L.), dill (Anethum graveolens L.), celery (Apium graveolens L. cv. Tall Utah), fennel (Foeniculum vulgare Mill), parsnip (Pastinaca sativa L. cv. Hollow Crown), parsley (Petroselinum sativum L. cv.Moss Curled), and chervil (Anthriscus cerefolium L. cv. Curled) were studied. Both endosperm and embryo protein bodies were investigated. Structurally, the protein bodies from all these genera were similar in that two types of protein bodies were found. One type consisted of a homogeneous, proteinaceous matrix and a number of variously sized, globoid crystal inclusions. The other type consisted of a homogeneous, proteinaceous matrix and either an individual or, more commonly, an aggregate of calcium-rich crystals arranged in a cluster usually termed a druse. Both types of protein bodies were never found in the same cell. Only globoid crystals were found in the embryo protein bodies. Protein bodies in the embryos were smaller, more numerous per cell, and often contained a flocculent, proteinaceous matrix.


1999 ◽  
Vol 5 (1-2) ◽  
Author(s):  
É. Stefanovits-Bányai ◽  
L. Boross ◽  
J. Bernáth ◽  
I. Kerepesi ◽  
M. Kiss ◽  
...  

Differences were demonstrated in esterasei coenzyme pattern of some essential oil producing plants belonging to the Apiaceae family — fennel (Foeniculum vulgare Mill.), angelica (Angelica archangelica L.), lovage (Levisticum officinale Koch.), dill (Anethum graveolens L.), coriander (Coriandrum sativum L.), anise (Pimpinella anisum L.), caraway (Carum carvi L.) — as well as differences between two varieties of fennel seed by using isoelectric focusing. That method provides quality control in essential oil plants and is suitable to describe isoenzyme pattern characteristic for taxons. Based on our findings, isoelectric focusing seems to be suitable for identification and differentiation of different plant samples, providing an easy tool for further processing as well as for breeding. Our further aim is to apply that method to differentiate among samples belonging to the same species according to their value of inner content.  


2021 ◽  
Vol 17 (1) ◽  
pp. 147-156
Author(s):  
Mohammed Saleh Al Aboody ◽  

Celery (Apium graveolens Linn, Family: Apiaceae) is a common edible herb used as a spice in the traditional medicine of several nations since time immemorial. The whole plant is extensively used in cooking as soups and salads. A. graveolens has various pharmacological properties such as anticancer, anti-obesity, anti-hepatotoxic, and antihypertensive agents. Hence, it is of interest to document the in vitro cytotoxic, antioxidant, and antimicrobial activity of A. graveolens. The plants were collected in the local market, shade dried, and different parts of the plants were extracted with 70% ethanol using a cold maceration process. Antioxidant tests were performed based on the various radical scavenging methods. Antimicrobial activity and MIC were completed using the respective cup-plate and two-fold serial dilution method. In vitro cytotoxic studies were achieved by the MTT; Sulphorhodamine B assayed total cell protein content. DLA and ESC cells determined the short-term toxicity. The leaf extract exhibited significant antioxidant properties against NO, DPPH, ABTS, LPO, and HPO methods. Thus, potential inhibition against Gram-positive, Gram-negative, and fungal strains within the MIC ranges of 250-500 μg/ml was observed. All the extracts of the plant presented in the study revealed greater cytotoxicity effects against five respective cancer cell lines, L6, Vero, BRL 3A, A-549, L929, and L-929 with the ranging of 443-168.5 μg/ml. Thus, we show that A. graveolens possess a potential cytotoxic, antioxidant, and antimicrobial activity.


2015 ◽  
Vol 10 (4) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Ana S. Mota ◽  
M. Rosário Martins ◽  
Sílvia Arantes ◽  
Violeta R. Lopes ◽  
Eliseu Bettencourt ◽  
...  

The aim of this study was to investigate the chemical composition and antimicrobial activity of essential oils obtained by hydrodistillation from fruits of six fennel accessions collected from wild populations occurring in the centre and south of Portugal. Composition of essential oils was established by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The obtained yields of the essential oils were found to vary greatly in the range of 1.1 to 2.9% (v/w) and the chemical composition varied with the region of collection. A total of 16 compounds were identified. The main compounds were fenchone (16.9 – 34.7%), estragole (2.5 – 66.0%) and trans-anethole (7.9 – 77.7%). The percentages of these three main compounds were used to determine the relationship between the different oil samples and to group them into four different chemotypes: anethole/fenchone; anethole; estragole and anethole/estragole. Antifungal activity of essential oils was evaluated against six food spoilage fungi: Aspergillus niger, A. japonicus, A. oryzae, Fusarium oxysporum, Rhizophus oryzae and R. stolonifer. Antibacterial activity was assessed against three Gram-positive strains: Enterococcus faecalis ATCC 29212, Staphylococcus epidermidis ATCC 12228 and S. aureus ATCC 28213; and against six Gram-negative strains: Escherichia coli ATCC 25922; Morganella morganii LFG 08; Proteus mirabilis LFG 04; Salmonella enteritidis LFG 05; S. entiritidis serovar typhimurium LFG 06 and Pseudomonas aeruginosa ATCC 27853 by the disc diffusion agar method; the minimal inhibitory concentration (MIC) was determined using the broth macro-dilution method. The MIC values varied from 62.5 ( E. coli ATCC 25922) to 2000 μg/mL ( P. aeruginosa ATCC 27853).


Sign in / Sign up

Export Citation Format

Share Document