A new equi-dimensional fracture model using polyhedral cells for microseismic data sets

2017 ◽  
Vol 154 ◽  
pp. 49-59 ◽  
Author(s):  
Omar Al-Hinai ◽  
Rencheng Dong ◽  
Sanjay Srinivasan ◽  
Mary F. Wheeler
Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. A45-A51 ◽  
Author(s):  
Chao Zhang ◽  
Mirko van der Baan

The low-magnitude microseismic signals generated by fracture initiation are generally buried in strong background noise, which complicates their interpretation. Thus, noise suppression is a significant step. We have developed an effective multicomponent, multidimensional microseismic-data denoising method by conducting a simplified polarization analysis in the 3D shearlet transform domain. The 3D shearlet transform is very competitive in dealing with multidimensional data because it captures details of signals at different scales and orientations, which benefits signal and noise separation. We have developed a novel processing strategy based on a signal-detection operator that can effectively identify signal coefficients in the shearlet domain by taking the correlation and energy distribution of 3C microseismic signals into account. We perform tests on synthetic and real data sets and determine that the proposed method can effectively remove random noise and preserve weak signals.


2019 ◽  
Vol 38 (8) ◽  
pp. 630-636 ◽  
Author(s):  
Jincheng Xu ◽  
Wei Zhang ◽  
Xaofei Chen ◽  
Quanshi Guo

Diffraction-stack-based algorithms are the most popular microseismic location methods for surface microseismic data. They can accommodate microseismic data with low signal-to-noise ratio by stacking a large number of traces. However, changes in waveform polarity across the receiver line due to source mechanisms may prevent stacking methods from locating the true source. Imaging functions based on simple stacks have low resolution, producing large uncertainty in the final location result. To solve these issues, we introduce a minimum semblance weighted stacking method with polarity correction, which uses an amplitude trend least-squares fitting algorithm to correct the polarity across the receiver line. We adapt the semblance weighted stacking for better coherency measure to improve the imaging resolution. Moreover, the minimum semblance is used to further improve the resolution of location results. Application to both synthetic and real data sets demonstrates good performance of our proposed location method.


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. V21-V29 ◽  
Author(s):  
Ismael Vera Rodriguez ◽  
David Bonar ◽  
Mauricio Sacchi

Noise contamination is an important problem in microseismic data processing, due to the low magnitude of the seismic events induced during fluid injection. In this study, a noncoherent noise attenuation technique based on a constrained time-frequency transform is presented. When applied to 1C data, the transform corresponds to a sparse representation of the microseismic signal in terms of a dictionary of complex Ricker wavelets. The use of complex wavelets possesses the advantage that signals with arbitrary phase can be represented with enhanced sparsity. A synthetic example illustrates the superior performance of the sparse constraint for denoising objectives when compared to the standard least-squares regularization. As the arrival time and frequency content of any wavefront are equivalent in the three components of a single receiver, the extension of the sparse transform to 3C data is accomplished when the three components are considered to share the same sparsity pattern in the time-frequency plane. Application of the 3C sparse transform to synthetic and real microseismic data sets demonstrate the advantages of this technique when the denoised results are compared against the original and low-pass filtered version of the noisy data. Furthermore, a comparison of hodograms between original, low-pass, and denoised traces shows that the denoising process preserves the phase and relative amplitude information present in the input data. The benefits of the 3C transform are highlighted particularly in cases where the wave arrivals are measured in the three components of a receiver but are only visible in two components due to the prevailing signal-to-noise ratio.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. WA227-WA240 ◽  
Author(s):  
Guoyin Zhang ◽  
Chengyan Lin ◽  
Yangkang Chen

Microseismic data have a low signal-to-noise ratio (S/N). Existing waveform classification and arrival-picking methods are not effective enough for noisy microseismic data with low S/N. We have adopted a novel antinoise classifier for waveform classification and arrival picking by combining the continuous wavelet transform (CWT) and the convolutional neural network (CNN). The proposed CWT-CNN classifier is applied to synthetic and field microseismic data sets. Results show that CWT-CNN classifier has much better performance than the basic deep feedforward neural network (DNN), especially for microseismic data with low S/N. The CWT-CNN classifier has a shallow network architecture and small learning data set, and it can be trained quickly for different data sets. We have determined why CWT-CNN has better performance for noisy microseismic data. CWT can decompose the microseismic data into time-frequency spectra, where effective signals and interfering noise are easier to distinguish. With the help of CWT, CNN can focus on the specific frequency components to extract useful features and build a more effective classifier.


Author(s):  
John A. Hunt

Spectrum-imaging is a useful technique for comparing different processing methods on very large data sets which are identical for each method. This paper is concerned with comparing methods of electron energy-loss spectroscopy (EELS) quantitative analysis on the Al-Li system. The spectrum-image analyzed here was obtained from an Al-10at%Li foil aged to produce δ' precipitates that can span the foil thickness. Two 1024 channel EELS spectra offset in energy by 1 eV were recorded and stored at each pixel in the 80x80 spectrum-image (25 Mbytes). An energy range of 39-89eV (20 channels/eV) are represented. During processing the spectra are either subtracted to create an artifact corrected difference spectrum, or the energy offset is numerically removed and the spectra are added to create a normal spectrum. The spectrum-images are processed into 2D floating-point images using methods and software described in [1].


Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


Author(s):  
Douglas L. Dorset

The quantitative use of electron diffraction intensity data for the determination of crystal structures represents the pioneering achievement in the electron crystallography of organic molecules, an effort largely begun by B. K. Vainshtein and his co-workers. However, despite numerous representative structure analyses yielding results consistent with X-ray determination, this entire effort was viewed with considerable mistrust by many crystallographers. This was no doubt due to the rather high crystallographic R-factors reported for some structures and, more importantly, the failure to convince many skeptics that the measured intensity data were adequate for ab initio structure determinations.We have recently demonstrated the utility of these data sets for structure analyses by direct phase determination based on the probabilistic estimate of three- and four-phase structure invariant sums. Examples include the structure of diketopiperazine using Vainshtein's 3D data, a similar 3D analysis of the room temperature structure of thiourea, and a zonal determination of the urea structure, the latter also based on data collected by the Moscow group.


Author(s):  
W. Shain ◽  
H. Ancin ◽  
H.C. Craighead ◽  
M. Isaacson ◽  
L. Kam ◽  
...  

Neural protheses have potential to restore nervous system functions lost by trauma or disease. Nanofabrication extends this approach to implants for stimulating and recording from single or small groups of neurons in the spinal cord and brain; however, tissue compatibility is a major limitation to their practical application. We are using a cell culture method for quantitatively measuring cell attachment to surfaces designed for nanofabricated neural prostheses.Silicon wafer test surfaces composed of 50-μm bars separated by aliphatic regions were fabricated using methods similar to a procedure described by Kleinfeld et al. Test surfaces contained either a single or double positive charge/residue. Cyanine dyes (diIC18(3)) stained the background and cell membranes (Fig 1); however, identification of individual cells at higher densities was difficult (Fig 2). Nuclear staining with acriflavine allowed discrimination of individual cells and permitted automated counting of nuclei using 3-D data sets from the confocal microscope (Fig 3). For cell attachment assays, LRM5 5 astroglial cells and astrocytes in primary cell culture were plated at increasing cell densities on test substrates, incubated for 24 hr, fixed, stained, mounted on coverslips, and imaged with a 10x objective.


Sign in / Sign up

Export Citation Format

Share Document