Organic-induced nanoscale pore structure and adsorption capacity variability during artificial thermal maturation: Pyrolysis study of the Mesoproterozoic Xiamaling marine shale from Zhangjiakou, Hebei, China

2021 ◽  
Vol 202 ◽  
pp. 108502
Author(s):  
Liangwei Xu ◽  
Keji Yang ◽  
Lifei Zhang ◽  
Luofu Liu ◽  
Zhenxue Jiang ◽  
...  
2018 ◽  
Vol 37 (1) ◽  
pp. 493-518 ◽  
Author(s):  
Liangwei Xu ◽  
Yang Wang ◽  
Luofu Liu ◽  
Lei Chen ◽  
Ji Chen

Thermal maturity has a considerable impact on hydrocarbon generation, mineral conversion, nanopore structure, and adsorption capacity evolution of shale, but that impact on organic-rich marine shales containing type II kerogen has been rarely subjected to explicit and quantitative characterization. This study aims to obtain information regarding the effects of thermal maturation on organic matter, mineral content, pore structure, and adsorption capacity evolution of marine shale. Mesoproterozoic Xiamaling immaturity marine oil shale with type II kerogen in Zhangjiakou of Hebei, China, was chosen for anhydrous pyrolysis to simulate the maturation process. With increasing simulation temperature, hydrocarbon generation and mineral transformation promote the formation, development, and evolution of pores in the shale. The original and simulated samples consist of closed microspores and one-end closed pores of the slit throat, all-opened wedge-shaped capillaries, and fractured or lamellar pores, which are related to the plate particles of clay. The increase in maturity can promote the formation and development of pores in the shale. Heating can also promote the accumulation, formation, and development of pores, leading to a large pore volume and surface area. The temperature increase can promote the development of pore volume and surface area of 1–10 and 40-nm diameter pores. The formation and development of pore volume and surface area of 1–10 nm diameter pores are more substantial than that of 40-nm diameter pores. The pore structure evolution of the sample can be divided into pore adjustment (T < 350°C, EqRo < 0.86%), development (350°C < T < 650°C, 0.86% < EqRo < 3.28%), and conversion or destruction stages (T > 650°C, EqRo > 3.28%). Along with the increase in maturity, the methane adsorption content decreases in the initial simulation stage, increases in the middle simulation stage, and reaches the maximum value at 650°C, after which it gradually decreases. A general evolution model is proposed by combining the nanopore structure and the adsorption capacity evolution characteristics of the oil shale.


2019 ◽  
Vol 7 (4) ◽  
pp. T843-T856
Author(s):  
Xinghua Wang ◽  
Arash Dahi Taleghani ◽  
Wenlong Ding

Characteristics of shale pore structures may play an important role in natural gas accumulation and consequently estimating the original gas in place. To determine the pore structure characteristics of Niutitang marine shale in the Sangzhi block, we carried out [Formula: see text] adsorption-desorption (LP-[Formula: see text]GA), [Formula: see text] adsorption (LP-[Formula: see text]GA), and methane isothermal adsorption on shale samples to reveal the pore size distribution (PSD) and its impact on the adsorption capacity. Results indicate that the Niutitang Shale is in stages of maturity and overmaturity with good organic matter, and they also indicate well-developed interparticle, intraparticle, and organic pores. Quartz and clay are found to be the main minerals, and the high illite content means that the Niutitang Shale is experiencing the later stage of clay mineral transformation. Various-sized shale pores are well-developed, and most of them are narrow and slit-like. For pores with diameters of 2–300 nm measured with LP-[Formula: see text]GA, mesopores (2–50 nm) contribute most of the total specific surface area (SSA) and total pore volume (TPV) in comparison to macropores (50–300 nm). For micropores ([Formula: see text]) tested by LP-[Formula: see text]GA, the PSD appears to be multimodal; shale pores of 0.50–0.90 nm diameter contribute most of the SSA and TPV. [Formula: see text]-SSA and [Formula: see text]-SSA indicate positive correlations with their corresponding TPV. The total organic matter (TOC) has good correlation with the SSA and TPV of micropores. The Langmuir volume positively correlates with the total SSA. Additionally, the TOC content has a good correlation with the Langmuir volume, which is consistent with the observation of well-developed fossils of diatoms and organic pores. As an important source of organic matter, more diatoms mean more organic matter, larger TOC values and quartz content, larger SSA and TPV of micropores, and, of course, stronger shale adsorption capacity. The results provide important guidance for the exploration and development of shale gas existing in the Sangzhi block.


2021 ◽  
Vol 21 (1) ◽  
pp. 43-56
Author(s):  
Xiang-Dong Gao ◽  
Yan-Bin Wang ◽  
Xiang Wu ◽  
Yong Li ◽  
Xiao-Ming Ni ◽  
...  

The high gas content of deep coal seams is a driving force for the exploration and development of deep coalbed methane (CBM). The nanoscale pores, which are the main spaces for adsorption and storage of CBM, are closely related to the burial depth. Based on integrated approaches of vitrinite reflectance (Ro), maceral composition, scanning electron microscope (SEM), proximate analysis, fluid inclusion test, low-temperature N2 adsorption–desorption, and CH4 isothermal adsorption, the nanoscale pore structure of coals recovered at depths from 650 to 2078 m was determined, and its influence on the CH4 adsorption capacity was discussed. The results show that the coal rank has a good linear relationship with the current burial depth of the coal seams; that is, the influences of the burial depth on the coals can be reflected by the influences of the coal rank on the coals. With the increase in the coal rank, the moisture and volatile content decrease, and the fixed carbon content increases. The variation in the pore volume and specific surface area with the increase in the coal rank can be divided into two stages: the rapid decline stage (when 0.75%<Ro < 1.0%), dominated by the compaction and gelatinization, and the slow decline stage (when 1.0%<Ro < 1.35%), characterized by the low stress sensitivity and the mass production of secondary pores. The percentage of micropores increases throughout the process. When 10 nm is taken as the boundary, the nanoscale pores show different fractal features. When Ro < 1.0%, the fractal dimension (FD) of the micropores is close to 3. When Ro > 1.0%, the FD of the micropores is close to 2. This indicates that with the increase in the degree of coalification, the surface of the micropores is simpler. The above results show that the gas adsorption capacity of coal first slightly decreases (when 0.75% < Ro < 1.0%) and then increases (when 1.0% < Ro < 1.35%), and the coincident results are shown in the Langmuir volume (VL) test results.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Run Chen ◽  
Yong Qin ◽  
Pengfei Zhang ◽  
Youyang Wang

The pore structure and gas adsorption are two key issues that affect the coal bed methane recovery process significantly. To change pore structure and gas adsorption, 5 coals with different ranks were treated by CS2 for 3 h using a Soxhlet extractor under ultrasonic oscillation conditions; the evolutions of pore structure and methane adsorption were examined using a high-pressure mercury intrusion porosimeter (MIP) with an AutoPore IV 9310 series mercury instrument. The results show that the cumulative pore volume and specific surface area (SSA) were increased after CS2 treatment, and the incremental micropore volume and SSA were increased and decreased before and after Ro,max=1.3%, respectively; the incremental big pore (greater than 10 nm in diameter) volumes were increased and SSA was decreased for all coals, and pore connectivity was improved. Methane adsorption capacity on coal before and after Ro,max=1.3% also was increased and decreased, respectively. There is a positive correlation between the changes in the micropore SSA and the Langmuir volume. It confirms that the changes in pore structure and methane adsorption capacity due to CS2 treatment are controlled by the rank, and the change in methane adsorption is impacted by the change of micropore SSA and suggests that the changes in pore structure are better for gas migration; the alteration in methane adsorption capacity is worse and better for methane recovery before and after Ro,max=1.3%. A conceptual mechanism of pore structure is proposed to explain methane adsorption capacity on CS2 treated coal around the Ro,max=1.3%.


2021 ◽  
Author(s):  
Barkat Ullah ◽  
Yuanping Cheng ◽  
Liang Wang ◽  
Weihua Yang ◽  
Izhar Mithal Jiskani ◽  
...  

Abstract Accurate and quantitative investigation of the physical structure and fractal geometry of coal has important theoretical and practical significance for coal bed methane and the prevention of dynamic disasters such as coal and gas outbursts. This study investigates the pore structure and fractural characteristics of soft and hard coals using nitrogen and carbon dioxide (N2/CO2) adsorption. Coal samples from Pingdingshan Mine in Henan province of China were collected and pulverized to the required size (0.2-0.25mm). N2/CO2 adsorption tests were performed to evaluate the pore size distribution (PSD), specific surface area (SSA), and pore volume (PV). The pore structure was characterized based on fractural theory. The results unveiled that the strength of coal has a significant influence on pore structure and fracture dimensions. The obvious N2-adsorption isotherms of the coals were verified as Type IV (A) and Type II. The shape of the hysteresis loops indicates the presence of slit-shaped pores. There are significant differences in SSA and PV between both coals. The soft coal showed larger SSA and PV than hard coal that shows consistency with adsorption capacity. The fractal dimensions of soft coal are respectively larger than that of hard coal. The greater the value of D1 (complexity of pore surface) of soft coal is, the larger the pore surface roughness and gas adsorption capacity is. The results enable us to conclude that the characterization of pores and fractures of soft and hard coals is different, tending to different adsorption/desorption characteristics and outburst sensitivity. In this regard, results provide a reference for formulating corresponding coal and gas outburst prevention and control measures.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3294 ◽  
Author(s):  
Zhenjian Liu ◽  
Zhenyu Zhang ◽  
Xiaoqian Liu ◽  
Tengfei Wu ◽  
Xidong Du

Carbon dioxide (CO2) has been used to replace coal seam gas for recovery enhancement and carbon sequestration. To better understand the alternations of coal seam in response to CO2 sequestration, the properties of four different coals before and after supercritical CO2 (ScCO2) exposure at 40 °C and 16 MPa were analyzed with Fourier Transform infrared spectroscopy (FTIR), low-pressure nitrogen, and CO2 adsorption methods. Further, high-pressure CO2 adsorption isotherms were performed at 40 °C using a gravimetric method. The results indicate that the density of functional groups and mineral matters on coal surface decreased after ScCO2 exposure, especially for low-rank coal. With ScCO2 exposure, only minimal changes in pore shape were observed for various rank coals. However, the micropore specific surface area (SSA) and pore volume increased while the values for mesopore decreased as determined by low-pressure N2 and CO2 adsorption. The combined effects of surface property and pore structure alterations lead to a higher CO2 adsorption capacity at lower pressures but lower CO2 adsorption capacity at higher pressures. Langmuir model fitting shows a decreasing trend in monolayer capacity after ScCO2 exposure, indicating an elimination of the adsorption sites. The results provide new insights for the long-term safety for the evaluation of CO2-enhanced coal seam gas recovery.


2020 ◽  
Vol 34 (2) ◽  
pp. 1548-1563 ◽  
Author(s):  
Yang Wang ◽  
Luofu Liu ◽  
Qinhong Hu ◽  
Lewei Hao ◽  
Ximeng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document