scholarly journals Finite Theory of the Universe, Dark Matter Disproof and Faster-Than-Light Speed

2012 ◽  
Vol 38 ◽  
pp. 222-241
Author(s):  
Phil Bouchard
2020 ◽  
Author(s):  
xinye wang

The Wave-Particle Duality is a basic property of microscopic particles. As a basic concept of quantum mechanics, the wave-particle duality theory from elementary particles to big molecules had been verified by lots of experiments. Different from electromagnetic wave, the matter wave’s propagation is not only fast but also adjustable. The group velocity with which the overall envelope shape of the wave , namely the related particle’s propagation and information convey speed is changeable with its wavelength. When the particle’s energy and wavelength, in its non-dispersive propagation, reach to definite values, the group velocity can turn to very high and perhaps is possible to exceed over the light speed in vacuum. Take electron as an example, if the free electron beam gains energy higher than around 4.094×10ˉᴵ⁴J and wavelength shorter than around 2.426×10ˉᴲnm, the group velocity could surpass the light speed in vacuum. According to the special relativity theory, the light speed in vacuum is the upper limit in the Universe and no matter can exceed over that. As the de Broglie hypothesis and the deduction in this paper do not take relativity theory as premise, the conclusion in this paper should be universality. Wish this paper could provide a different viewpoint for exploration of some scientific problems, such as Faster-Than-Light movement, quantum entanglement mechanism and so on


2020 ◽  
Author(s):  
xinye wang

The Wave-Particle Duality is a basic property of microscopic particles. As a basic concept of quantum mechanics, the wave-particle duality theory from elementary particles to big molecules had been verified by lots of experiments. Different from electromagnetic wave, the matter wave’s propagation is not only fast but also adjustable. The group velocity with which the overall envelope shape of the wave , namely the related particle’s propagation and information convey speed is changeable with its wavelength. When the particle’s energy and wavelength, in its non-dispersive propagation, reach to definite values, the group velocity can turn to very high and perhaps is possible to exceed over the light speed in vacuum. Take electron as an example, if the free electron beam gains energy higher than around 4.094×10ˉᴵ⁴J and wavelength shorter than around 2.426×10ˉᴲnm, the group velocity could surpass the light speed in vacuum. According to the special relativity theory, the light speed in vacuum is the upper limit in the Universe and no matter can exceed over that. As the de Broglie hypothesis and the deduction in this paper do not take relativity theory as premise, the conclusion in this paper should be universality. Wish this paper could provide a different viewpoint for exploration of some scientific problems, such as Faster-Than-Light movement, quantum entanglement mechanism and so on


2021 ◽  
Vol 503 (4) ◽  
pp. 5091-5099
Author(s):  
Dragan Slavkov Hajdukovic ◽  
Sergej Walter

ABSTRACT In a recent paper, quantum vacuum was considered as a source of gravity, and the simplest, phenomenon, the gravitational polarization of the quantum vacuum by an immersed point-like body, was studied. In this paper, we have derived the effective gravitational charge density of the quantum vacuum, caused by two immersed point-like bodies. Among others, the obtained result proves that quantum vacuum can have regions with a negative effective gravitational charge density. Hence, quantum vacuum, the ‘ocean’ in which all matter of the Universe is immersed, acts as a complex fluid with a very variable gravitational charge density that might include both positive and negative densities; a crucial prediction that can be tested within the Solar system. In the general case of ${N \ge {\rm{3}}}$ point-like bodies, immersed in the quantum vacuum, the analytical solutions are not possible, and the use of numerical methods is inevitable. The key point is that an appropriate numerical method, for the calculation of the effective gravitational charge density of the quantum vacuum induced by N immersed bodies, might be crucial in description of galaxies, without the involvement of dark matter or a modification of gravity. The development of such a valuable numerical method, is not possible, without a previous (and in this study achieved) understanding of the impact of a two-body system.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lorenzo Calibbi ◽  
Francesco D’Eramo ◽  
Sam Junius ◽  
Laura Lopez-Honorez ◽  
Alberto Mariotti

Abstract Displaced vertices at colliders, arising from the production and decay of long-lived particles, probe dark matter candidates produced via freeze-in. If one assumes a standard cosmological history, these decays happen inside the detector only if the dark matter is very light because of the relic density constraint. Here, we argue how displaced events could very well point to freeze-in within a non-standard early universe history. Focusing on the cosmology of inflationary reheating, we explore the interplay between the reheating temperature and collider signatures for minimal freeze-in scenarios. Observing displaced events at the LHC would allow to set an upper bound on the reheating temperature and, in general, to gather indirect information on the early history of the universe.


1987 ◽  
Vol 117 ◽  
pp. 414-414
Author(s):  
Jonathan C. McDowell

It has been proposed (e.g. Carr, Bond and Arnett 1984) that the first generation of stars may have been Very Massive Objects (VMOs, of mass above 200 M⊙) which existed at large redshifts and left a large fraction of the mass of the universe in black hole remnants which now provide the dynamical ‘dark matter’. The radiation from these stars would be present today as extragalactic background light. For stars with density parameter Ω* which convert a fraction ϵ of their rest-mass to radiation at a redshift of z, the energy density of background radiation in units of the critical density is ΩR = εΩ* / (1+z). The VMOs would be far-ultraviolet sources with effective temperatures of 105 K. If the radiation is not absorbed, the constraints provided by measurements of background radiation imply (for H =50 km/s/Mpc) that the stars cannot close the universe unless they formed at a redshift of 40 or more. To provide the dark matter (of one-tenth closure density) the optical limits imply that they must have existed at redshifts above 25.


2015 ◽  
Vol 04 (01) ◽  
pp. 28-30
Author(s):  
Yuan-Hann Chang

It is known that the majority (about 80%) of the matter in the universe is not visible, but rather a hypothetical "Dark Matter". The existence of Dark Matter has been postulated to explain the discrepancies between the estimated mass of visible matters in the galaxies, and their gravitational effects. Although it has been postulated for over 70 years, and has been commonly accepted by most scientists, the essence of the Dark Matter has not yet been understood. In particular, we still do not know what constitutes the Dark Matter. Direct detection of the Dark Matter is therefore one of the most important issues in physics.


2005 ◽  
Vol 20 (14) ◽  
pp. 1021-1036 ◽  
Author(s):  
GIANFRANCO BERTONE ◽  
DAVID MERRITT

Non-baryonic, or "dark", matter is believed to be a major component of the total mass budget of the Universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.


2006 ◽  
Vol 96 (4) ◽  
Author(s):  
Glennys R. Farrar ◽  
Gabrijela Zaharijas

2013 ◽  
Vol 22 (14) ◽  
pp. 1350082 ◽  
Author(s):  
SHUO CAO ◽  
NAN LIANG

In order to test if there is energy transfer between dark energy (DE) and dark matter (DM), we investigate cosmological constraints on two forms of nontrivial interaction between the DM sector and the sector responsible for the acceleration of the universe, in light of the newly revised observations including OHD, CMB, BAO and SNe Ia. More precisely, we find the same tendencies for both phenomenological forms of the interaction term Q = 3γHρ, i.e. the parameter γ to be a small number, |γ| ≈ 10-2. However, concerning the sign of the interaction parameter, we observe that γ > 0 when the interaction between dark sectors is proportional to the energy density of dust matter, whereas the negative coupling (γ < 0) is preferred by observations when the interaction term is proportional to DE density. We further discuss two possible explanations to this incompatibility and apply a quantitative criteria to judge the severity of the coincidence problem. Results suggest that the γm IDE model with a positive coupling may alleviate the coincidence problem, since its coincidence index C is smaller than that for the γd IDE model, the interacting quintessence and phantom models by four orders of magnitude.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Partha Konar ◽  
Ananya Mukherjee ◽  
Abhijit Kumar Saha ◽  
Sudipta Show

Abstract We propose an appealing alternative scenario of leptogenesis assisted by dark sector which leads to the baryon asymmetry of the Universe satisfying all theoretical and experimental constraints. The dark sector carries a non minimal set up of singlet doublet fermionic dark matter extended with copies of a real singlet scalar field. A small Majorana mass term for the singlet dark fermion, in addition to the typical Dirac term, provides the more favourable dark matter of pseudo-Dirac type, capable of escaping the direct search. Such a construction also offers a formidable scope to radiative generation of active neutrino masses. In the presence of a (non)standard thermal history of the Universe, we perform the detailed dark matter phenomenology adopting the suitable benchmark scenarios, consistent with direct detection and neutrino oscillations data. Besides, we have demonstrated that the singlet scalars can go through CP-violating out of equilibrium decay, producing an ample amount of lepton asymmetry. Such an asymmetry then gets converted into the observed baryon asymmetry of the Universe through the non-perturbative sphaleron processes owing to the presence of the alternative cosmological background considered here. Unconventional thermal history of the Universe can thus aspire to lend a critical role both in the context of dark matter as well as in realizing baryogenesis.


Sign in / Sign up

Export Citation Format

Share Document