A novel efficient time and frequency waveform design for filter bank multicarrier communication systems by using Hybrid gray wolf optimization algorithm

2021 ◽  
Vol 49 ◽  
pp. 101468
Author(s):  
A. Maroosi ◽  
S.M.J. Asgari Tabatabaee
2021 ◽  
Vol 9 (17) ◽  
pp. 26-39
Author(s):  
Hugo Wladimir Iza Benítez ◽  
Diego Javier Reinoso Chisaguano

UFMC (Universal Filtered Multi-Carrier) is a novel multi-carrier transmission technique that aims to replace the OFDM (Orthogonal Frequency Division Multiplexing) modulation technique for fifth generation (5G) wireless communication systems. UFMC, being a generalization of OFDM and FBMC (Filter Bank Multicarrier), combines the advantages of these systems and at the same time avoids their main disadvantages. Using a Matlab simulation, this article presents an analysis of the robustness of UFMC against fading effects of multipath channels without using a CP (cyclic prefix). The behavior of the UFMC system is analyzed in terms of the PSD (Power Spectral Density), BER (Bit Error Rate) and MSE (Mean Square Error). The results show that UFMC reduces the out-band side lobes produced in the PSD of the processed signal. Also, it is shown that the pilot-assisted channel estimation method applied in OFDM systems can also be applied in UFMC systems.


Information ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 246 ◽  
Author(s):  
Han Wang

The filter bank multicarrier employing offset quadrature amplitude modulation (FBMC/OQAM) is a candidate transmission scheme for 5G wireless communication systems. However, it has a high peak-to-average power ratio (PAPR). Due to the nature of overlapped signal structure of FBMC/OQAM, conventional PAPR reduction schemes cannot work effectively. A hybrid PAPR reduction scheme based on selective mapping (SLM) and multi data block partial transmit sequence (M-PTS) methods is proposed for FBMC/OQAM signals in this paper. Different from the simple SLM-PTS method, the proposed hybrid algorithm takes into account the overlapping effect of multiple adjacent data blocks on its PTS process. From simulation results, it can be obtained that the proposed method can offer a significant PAPR reduction performance improvement compared with the SLM, PTS and SLM-PTS methods. The proposed method can effectively reduce the PAPR in FBMC/OQAM systems.


2021 ◽  
Vol 25 (5) ◽  
pp. 85-94
Author(s):  
Noor Q. Lateef ◽  
◽  
Fadhil S. Hasan ◽  

One of the major disadvantages of Filter Bank Multicarrier (FBMC) is high Peak-to-Average Power Ratio (PAPR) of transmitted signal. As a result, nonlinear power amplifier (PA) properties, considerable out-of-band and the in-band distortion types take place in the case where the signals of high peak exceed the PA saturation level. In the present study, a new method of the PAPR reduction is presented and applied to reduce PAPR in FBMC/OQAM system. Different clipping methods have been proposed and studied that are Amplitude Clipping (AC), Palm Clipping (PC), Deep Clipping (DC), and smooth Clipping (SC) for the reduction of PAPR. To evaluate and analyze the performance of PAPR reduction methods, PAPR and Bit Error Rate (BER) measures are used and programmed using MATLAB program. The simulation results show that the clipping methods are strong substitute methods which may be assumed as a method of PAPR reduction for the FBMC-based communication systems and AC appears to be the best method.


Author(s):  
Mohammad Razk Assaf ◽  
Abdel-Nasser Assimi

Filter bank multicarrier is one of the candidates for future communication systems. Simple equalization methods cannot be directly applied due to the high interference from adjacent channels. In this article, the authors derive a soft-input/soft-output (SISO) equalizer based on the minimum mean square error (MMSE) criterion for the bit-interleaved coded system using a filter bank multi-carrier scheme with offset quadrature amplitude modulation (FBMC/OQAM). The authors use this SISO-MMSE equalizer in a turbo-equalization scheme for each sub-carrier. The difficulty in this implementation comes from the required processing delay per turbo-iteration due to the non-causal nature of the interference in this system. Therefore, the number of turbo-iterations is limited in order to limit the processing delay. The authors evaluate the performance of the proposed turbo-equalizer over the International Telecommunication Union (ITU) Vehicular B channel by mean of numerical simulations. The obtained results show the effectiveness of the proposed equalizer in term of signal-to-noise ratio (SNR) gain.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Haitham F. Abdalla ◽  
Emad S. Hassan ◽  
Moawad I. Dessouky

AbstractFilter bank multicarrier (FBMC) is a new waveform candidate in the visible light communication system (VLC). FBMC is a particular sort of multi-carrier modulation that can be viewed as an option in contrast to orthogonal frequency division multicarrier (OFDM) with CP (cyclic prefix). The point is to defeat some innate disadvantages of the normally utilized optical OFDM schemes. The principles of key transceiver should be intended to suit the necessities of the channel of IM/DD. Peak to average power ratio (PAPR) and bit error rate (BER) performance of FBMC based VLC are discussed and compared with scheme of optical OFDM. FBMC based VLC system with clipping technique has the lowest PAPR and good BER performance compared to conventional system in this paper. This paper recommends that FBMC based VLC has an incredible potential for optical wireless communication systems with high-speed. Matlab program simulations confirm the analysis. The results may shed light into potential research line on FBMC based VLC systems.


2021 ◽  
Vol 11 (10) ◽  
pp. 4382
Author(s):  
Ali Sadeghi ◽  
Sajjad Amiri Doumari ◽  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Pavel Trojovský ◽  
...  

Optimization is the science that presents a solution among the available solutions considering an optimization problem’s limitations. Optimization algorithms have been introduced as efficient tools for solving optimization problems. These algorithms are designed based on various natural phenomena, behavior, the lifestyle of living beings, physical laws, rules of games, etc. In this paper, a new optimization algorithm called the good and bad groups-based optimizer (GBGBO) is introduced to solve various optimization problems. In GBGBO, population members update under the influence of two groups named the good group and the bad group. The good group consists of a certain number of the population members with better fitness function than other members and the bad group consists of a number of the population members with worse fitness function than other members of the population. GBGBO is mathematically modeled and its performance in solving optimization problems was tested on a set of twenty-three different objective functions. In addition, for further analysis, the results obtained from the proposed algorithm were compared with eight optimization algorithms: genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm (GSA), teaching–learning-based optimization (TLBO), gray wolf optimizer (GWO), and the whale optimization algorithm (WOA), tunicate swarm algorithm (TSA), and marine predators algorithm (MPA). The results show that the proposed GBGBO algorithm has a good ability to solve various optimization problems and is more competitive than other similar algorithms.


Sign in / Sign up

Export Citation Format

Share Document