scholarly journals A Hybrid PAPR Reduction Method Based on SLM and Multi-Data Block PTS for FBMC/OQAM Systems

Information ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 246 ◽  
Author(s):  
Han Wang

The filter bank multicarrier employing offset quadrature amplitude modulation (FBMC/OQAM) is a candidate transmission scheme for 5G wireless communication systems. However, it has a high peak-to-average power ratio (PAPR). Due to the nature of overlapped signal structure of FBMC/OQAM, conventional PAPR reduction schemes cannot work effectively. A hybrid PAPR reduction scheme based on selective mapping (SLM) and multi data block partial transmit sequence (M-PTS) methods is proposed for FBMC/OQAM signals in this paper. Different from the simple SLM-PTS method, the proposed hybrid algorithm takes into account the overlapping effect of multiple adjacent data blocks on its PTS process. From simulation results, it can be obtained that the proposed method can offer a significant PAPR reduction performance improvement compared with the SLM, PTS and SLM-PTS methods. The proposed method can effectively reduce the PAPR in FBMC/OQAM systems.

2021 ◽  
Vol 25 (5) ◽  
pp. 85-94
Author(s):  
Noor Q. Lateef ◽  
◽  
Fadhil S. Hasan ◽  

One of the major disadvantages of Filter Bank Multicarrier (FBMC) is high Peak-to-Average Power Ratio (PAPR) of transmitted signal. As a result, nonlinear power amplifier (PA) properties, considerable out-of-band and the in-band distortion types take place in the case where the signals of high peak exceed the PA saturation level. In the present study, a new method of the PAPR reduction is presented and applied to reduce PAPR in FBMC/OQAM system. Different clipping methods have been proposed and studied that are Amplitude Clipping (AC), Palm Clipping (PC), Deep Clipping (DC), and smooth Clipping (SC) for the reduction of PAPR. To evaluate and analyze the performance of PAPR reduction methods, PAPR and Bit Error Rate (BER) measures are used and programmed using MATLAB program. The simulation results show that the clipping methods are strong substitute methods which may be assumed as a method of PAPR reduction for the FBMC-based communication systems and AC appears to be the best method.


2021 ◽  
Vol 9 (17) ◽  
pp. 26-39
Author(s):  
Hugo Wladimir Iza Benítez ◽  
Diego Javier Reinoso Chisaguano

UFMC (Universal Filtered Multi-Carrier) is a novel multi-carrier transmission technique that aims to replace the OFDM (Orthogonal Frequency Division Multiplexing) modulation technique for fifth generation (5G) wireless communication systems. UFMC, being a generalization of OFDM and FBMC (Filter Bank Multicarrier), combines the advantages of these systems and at the same time avoids their main disadvantages. Using a Matlab simulation, this article presents an analysis of the robustness of UFMC against fading effects of multipath channels without using a CP (cyclic prefix). The behavior of the UFMC system is analyzed in terms of the PSD (Power Spectral Density), BER (Bit Error Rate) and MSE (Mean Square Error). The results show that UFMC reduces the out-band side lobes produced in the PSD of the processed signal. Also, it is shown that the pilot-assisted channel estimation method applied in OFDM systems can also be applied in UFMC systems.


2021 ◽  
Author(s):  
Srinivas Ramavath ◽  
Umesh Chandra Samal

Abstract In this paper, two new companders are designed to reduce the ratio of peak to average power (PAPR) experienced by filter bank multicarrier (FBMC) signals. Specifically, the compander basic model is generalized, which alter the distributed FBMC signal amplitude peak. The proposed companders design approach provides better performance in terms of reducing the PAPR, Bit Error Rate (BER) and phase error degradation over the previously existing compander schemes. Many PAPR reduction approaches, such as the µ-law companding technique, are also available. It results in the formation of spectrum side lobes, although the proposed techniques result in a spectrum with fewer side lobes. The theoretical analysis of linear compander and expander transform for a few specific parameters are derived and analyzed. The suggested linear companding technique is analytically analysed using simulations to show that it efficiently decreases the high peaks in the FBMC system.


2020 ◽  
Vol 8 (6) ◽  
pp. 4339-4344

Filtered-Orthogonal Division Multiplexing (F-OFDM) is one of the capable alternative candidate modulation methods for 5G communication systems. F-OFDM utilizes the allocated spectrum by having lower side-lobes, which leads to higher spectral efficiency. However, it experiences an elevated peak-to-average power ratio (PAPR). This influences the radio frequency components’ operation mode, such as the power amplifier and the digital-to-analog converter. Also, high PAPR builds the amplifiers to exertion in non-linear regions and enhance the Bit Error Rate (BER). Moreover, Large PAPR guides to spectral spreading and band distortion. Selective Mapping (SLM) provides enhanced PAPR reduction without the data rate loss and also exclusive of the signal distortion. Though, SLM has elevated computational complexity additionally. Numerous procedures have been suggested in the research for OFDM. In this thesis, a modified-SLM using Discrete Sine Transform (DST) is recommended to lessen the PAPR of filtered-OFDM. The idea of a Discrete Sine Transform is de-correlating the data in a sequence by compressed a large amount of signal energy into a few transform coefficients; consequently it provides an improved diminution in PAPR. Furthermore, the BER performance of the system has been enhanced by applying an optimization algorithm called Particle Swarm Optimization (PSO). This proposed model results illustrate that the proposed Modified Selective mapping using Discrete Sine Transform (MSLM-DST) technique can provide a PAPR reduction of about 4.4 dB. Moreover, the PSO improved the system performance as it significantly reduces the BER of the system.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Haitham F. Abdalla ◽  
Emad S. Hassan ◽  
Moawad I. Dessouky

AbstractFilter bank multicarrier (FBMC) is a new waveform candidate in the visible light communication system (VLC). FBMC is a particular sort of multi-carrier modulation that can be viewed as an option in contrast to orthogonal frequency division multicarrier (OFDM) with CP (cyclic prefix). The point is to defeat some innate disadvantages of the normally utilized optical OFDM schemes. The principles of key transceiver should be intended to suit the necessities of the channel of IM/DD. Peak to average power ratio (PAPR) and bit error rate (BER) performance of FBMC based VLC are discussed and compared with scheme of optical OFDM. FBMC based VLC system with clipping technique has the lowest PAPR and good BER performance compared to conventional system in this paper. This paper recommends that FBMC based VLC has an incredible potential for optical wireless communication systems with high-speed. Matlab program simulations confirm the analysis. The results may shed light into potential research line on FBMC based VLC systems.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850106 ◽  
Author(s):  
M. I. Al-Rayif ◽  
H. Seleem ◽  
A. Ragheb ◽  
S. Alshebeili

Orthogonal frequency division multiplexing (OFDM) modulation is proposed in 4G wireless communication systems, and is under consideration for the next generation 5G systems. This is due to the higher spectral efficiency (SE) and the better immunity to channel distortions. One of the shortcomings in OFDM is its high peak-to-average power ratio (PAPR). Several schemes have been proposed to reduce the PAPR in OFDM systems. This includes clipping, coding, and pre/post-distortion schemes with or without side information. In this paper, we experimentally demonstrate one of the most promising method, to mitigate the effect of PAPR, entitled the partial orthogonal selective mapping (POSLM). The experimental results show a comparable performance with respect to the simulation results in terms of PAPR reduction, power spectral density (PSD), and bit error rate (BER) metrics.


Author(s):  
Ritu Mor

The term OFDM is a special type of FDM which has very vast application in the field of wired and wireless communication systems. In this paper we are discussing about the main problem of OFDM i.e. Peak to Average Power Ratio (PAPR) which affects the performance and efficiency of Power Amplifier. Partial Transmit Sequence (PTS) is an attractive scheme for PAPR reduction without distortion, but to obtain preferable PAPR performance it needs many Inverse Fast Fourier Transforms (IFFTs) which results in high complexity. In this paper, a single IFFT block is implanted in to PTS technique for reduction of PAPR in OFDM. The scheme is very efficient and avoids the use of any extra IFFTs as was done in PAPR reduction by ordinary PTS technique.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 190 ◽  
Author(s):  
Brahim Bakkas ◽  
Reda Benkhouya ◽  
Idriss Chana ◽  
Hussain Ben-Azza

Orthogonal frequency division multiplexing (OFDM) is the key technology used in high-speed communication systems. One of the major drawbacks of OFDM systems is the high peak-to-average power ratio (PAPR) of the transmitted signal. The transmitted signal with a high PAPR requires a very large linear range of the Power Amplifier (PA) on the transmitter side. In this paper, we propose and study a new clipping method named Palm Clipping (Palm date leaf) based on hyperbolic cosine. To evaluate and analyze its performance in terms of the PAPR and Bit Error Rate (BER), we performed some computer simulations by varying the Clipping Ratio (CR) and modulation schemes. The obtained results show that it is possible to achieve a gain of between 7 and 9 dB in terms of PAPR reduction depending on the type of modulation. In addition, comparison with several techniques in terms of PAPR and BER shows that our method is a strong alternative that can be adopted as a PAPR reduction technique for OFDM-based communication systems.


Sign in / Sign up

Export Citation Format

Share Document