Tunable emission and conductivity enhancement by tellurium doping in CdS nanowires for optoelectronic applications

2017 ◽  
Vol 86 ◽  
pp. 81-87 ◽  
Author(s):  
Muhammad Arshad Kamran ◽  
Ghulam Nabi ◽  
Abdul Majid ◽  
Muhammad Waqas Iqbal ◽  
Thamer Alharbi ◽  
...  
2009 ◽  
Vol 42 (16) ◽  
pp. 165406 ◽  
Author(s):  
Mashkoor Ahmad ◽  
Jiong Zhao ◽  
Javed Iqbal ◽  
Wei Miao ◽  
Lin Xie ◽  
...  

2018 ◽  
Author(s):  
Takuma Ohtaki ◽  
Maho Mitsuo ◽  
Takayuki Terauchi ◽  
Hiroshi Iguchi ◽  
Keiko Fujioka ◽  
...  

2019 ◽  
Author(s):  
Patricia Scheurle ◽  
Andre Mähringer ◽  
Andreas Jakowetz ◽  
Pouya Hosseini ◽  
Alexander Richter ◽  
...  

Recently, a small group of metal-organic frameworks (MOFs) has been discovered featuring substantial charge transport properties and electrical conductivity, hence promising to broaden the scope of potential MOF applications in fields such as batteries, fuel cells and supercapacitors. In combination with light emission, electroactive MOFs are intriguing candidates for chemical sensing and optoelectronic applications. Here, we incorporated anthracene-based building blocks into the MOF-74 topology with five different divalent metal ions, that is, Zn2+, Mg2+, Ni2+, Co2+ and Mn2+, resulting in a series of highly crystalline MOFs, coined ANMOF-74(M). This series of MOFs features substantial photoluminescence, with ANMOF-74(Zn) emitting across the whole visible spectrum. The materials moreover combine this photoluminescence with high surface areas and electrical conductivity. Compared to the original MOF-74 materials constructed from 2,5-dihydroxy terephthalic acid and the same metal ions Zn2+, Mg2+, Ni2+, Co2+ and Mn2+, we observed a conductivity enhancement of up to six orders of magnitude. Our results point towards the importance of building block design and the careful choice of the embedded MOF topology for obtaining materials with desired properties such as photoluminescence and electrical conductivity.


2019 ◽  
Author(s):  
Torben Sick ◽  
Niklas Keller ◽  
Nicolai Bach ◽  
Andreas Koszalkowski ◽  
Julian Rotter ◽  
...  

Covalent organic frameworks (COFs), consisting of covalently connected organic building units, combine attractive features such as crystallinity, open porosity and widely tunable physical properties. For optoelectronic applications, the incorporation of heteroatoms into a 2D COF has the potential to yield desired photophysical properties such as lower band gaps, but can also cause lateral offsets of adjacent layers. Here, we introduce dibenzo[g,p]chrysene (DBC) as a novel building block for the synthesis of highly crystalline and porous 2D dual-pore COFs showing interesting properties for optoelectronic applications. The newly synthesized terephthalaldehyde (TA), biphenyl (Biph), and thienothiophene (TT) DBC-COFs combine conjugation in the a,b-plane with a tight packing of adjacent layers guided through the molecular DBC node serving a specific docking site for successive layers. The resulting DBC-COFs exhibit a hexagonal dual-pore kagome geometry, which is comparable to COFs containing another molecular docking site, namely 4,4′,4″,4‴-(ethylene-1,1,2,2-tetrayl)-tetraaniline (ETTA). In this context, the respective interlayer distances decrease from about 4.60 Å in ETTA-COFs to about 3.6 Å in DBC-COFs, leading to well-defined hexagonally faceted single crystals sized about 50-100 nm. The TT DBC-COFs feature broad light absorption covering large parts of the visible spectrum, while Biph DBC-COF shows extraordinary excited state lifetimes exceeding 10 ns. In combination with the large number of recently developed linear conjugated building blocks, the new DBC tetra-connected node is expected to enable the synthesis of a large family of strongly p-stacked, highly ordered 2D COFs with promising optoelectronic properties.


2019 ◽  
Author(s):  
Alexander Achtstein ◽  
Riccardo Scott ◽  
Juan Climente ◽  
Marta Corona-Castro ◽  
Anatol Prudnikau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document